THERMODYNAMICS 2.

Gas Laws. c
The gas laws are embodled in the equatlon pV= RT - Here
it is supposed that we are dealing with 1. mole of gas..

P = préssure per unit area on the container of the gas.
V = volume of the gas.:

T = absolute temperature.

R = a universal constant, the gas constant.

A mole of gas always contains the same number, N, of
molecules. N is called Avogadro's constant; it is

. 23

approximately 6 x 10

An ideal gas would conform exactly to this equation.
Many gases in actual practice approximate well to it, if : .
they are at low pressure and high temperatures. It is
possible to explain why this is so.  We shall see in the
following sections that the equation above can be deduced
by assuming that the molecules of the gas have negligible
volume and that there are no forces between molecules. A
gas at low pressure fills a volume very large in comparison
with the total volume of the molecules in it, so neglecting
the volumes of the molecules does not cause any serious
error. Also the forces between molecules are very small
when the distance between them is large. On the other hand,
with high pressures and low temperatures the gas is near
the state in which it becomes a liquid; strong forces begin
to act between the molecules and thelr volumes certainly
cannot be neglected. | ;

Statistical Mechanics.

Accordingly we: consider a swarm of very small particles,
with no forces between them, and moving in a very large
space, A consequence of this is that encounters between
molecules will be comparatively rare; for nearly all the
time any molecule will be moving in free path. The
molecules are supposed to be perfectly elastic; when they
strike the walls of the container they rebound without loss
of energy. This gives us a picture we can 1mag1ne, which
is often very helpful.

Clausius in 1857 stated in mathematical form the
kinetic theory of gases, i.e. the theory that. gases can be
imagined as consisting of moving masses obeying the laws of
dynamics. However he did not allow for the fact that. the
velocities of the molecules must vary widely.. In 1860
Maxwell removed this defect and produced a very
satisfactory statlstlcal theory of the movements of
molecules in gases.

He began with the assumption of molecular chaos, the
idea that so many millions of molecules were involved in
such complicated processes that the eventual result was
complete randomness.

Let f(u)du be the probablllty that the x—component of
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Calculatlng Pressure. ' rese

(Forceregquals. ' the’'rate- of change of momentum, So ' we can-
firnd: the pressure:on a.'wall by seeing what change of . . -
momentum it produces on- the partlcles hlttlng 1t per’ un1t
time.

We conSLder a rectangular block, Wlth 51des in the :
directions of the axes, with a wall of unit area in the
plane x=constant, at the end where x is maximum. A particle
with positive x-velocity; u, " will 'hit the wall within a
time /\t; if it lies within-d.distance -u/\t of the wall,
that is. to say in a region of volume u/\t. We suppose there
are N partlcles in a volume V so the number of particles
expected in this region is Nu/\t/V. The number of these
expected to have x-velocity -in:ujyu+du is (Nu/\t/v)E(u)du. 7
If theé-particles -have mass m, each will- carry the momentum
mu., This will be.reversed on striking: the wall, 'so the
change. in momentum is 2mu for each particle. fHénce‘the .
change in momentum 1n tlme T\t is T\wjy S o

A
e

(ZNm/v) /\t TI' 1/2 1/2 S 00 . ;du';_"::'(1'2)'."w

D1V1d1ng thlS by /\t gives the: pressure.- To eévaluate’ tg
integral we apply the partial differentiation operator /oa
to eguation (10) above and change the 51gn. ThlS glves

-

—-au
(oo 2, - 172y TT1/2 -3/2 o L(13)

In:eguationo(;12)5wexhave theilntegral only+from 0 to oo, -
so we need 1/4 instead of 1/2 in the expression in (13).
substitutingcthis in (12) and removing the factor /\t we
find.the pressure per. unlt area is T »

p = Nm/[2va]. ¢~5f'. (14)
Identifying a.s: . A ‘ SO S
The gas equatlon igpVi= RT, To we 1dent1fy Nm/[2a] w1th
RT. This implies'! a.= .Nm/[2RT]. It is usual -to: represent
the universal constant R/N by k. Thus a = (m/2)/(kT).:
thus appears that the probablllty of the x—veloc1ty belng
in. u,u+du. 1s proportional to.. = R 2

TR ,~-(1/25mu2/(kw) R
et e o ’_duh.f" "(15)

Note the appearance of the klnetlc energy a55001ated w1th
the =- ve1001ty 1n thlS formula

Energy for ‘an 1deal gas. S B I
Thé ‘average ‘value of - (1/2)mu ' 1s'(m/2)$ ' u f(u)du.5

combining equations (11) and (13) we .find thlS to'be -

m/(4a).  We "have'seen that.a = m/(2kT), so:m/(4a)=
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on the path, for the integral in question is sydx, which’
arises when we calculate the area under-‘a’ curve. For a
closed path it'is-related to the area inside the curve..

On the=bthér!hand;_ifiwéitéke:X%2x;-Y;2yrwe have an’ '
exact differential, 'er__'ZxdeZyiiiy 7 =_"d{x2+y%)'l an’d_- the: con
integral will give - simply the difference in x2+y25between
the ends of the path. It can bé checked that zero results.
if the integral is.fbundAarbund“theipathﬂspeéified éarlier.

The distinction betweéen’ exact and inexact. - ': o
differentials i of great importance in thérmodynam

ics. It .

was at one time-believed. that heat was a substance, that if .
heat came out of a body, there was less heat remaining . . .
inside the body. As the cannon boring ‘experience
suggested, there is no limit to the amount of heat that can
come out of a body. - . - .- s

A quantity is said to be a function of state if its
value can be determined by an object.as it is at this . .
moment without any reference to its history. Thus, for
example, pressure, volume ‘and temperature’ are functions of

state, - work done“and heat entered are not.. - :

Heat,Q, entering & body is usually regarded as. ’
positive, work,W, is regarded as positive when the body: " .
does work on the surroundings. We cannot regard either:
heat ‘or.work 'as something ‘contained in ‘a*body, but during a
certain period we can measure the heat -trahsferred to the -
body arnd ‘the work done by the body. The first Law of .
Thermodynamics, which -is essentially the' Conservation .of -
Energy, can be stated as "The quantity Q-W depends only ‘o
the initial and final states of the system and is>. "o . ..o

independent 'of -thé path followed." We define the change
of energy of the body, /\E, by the equation: - S e
ST BT QW e

If we agree on the energy value to be associated with some

specified state, then E is definéd and is thus a gunction .

of state. - For infinitesimal ‘changes we may write Lo
dE=AQfAW. L

The notation here is' intended to indicate that dE is a true
infinitesimal,‘relatedﬁtoithé'differentiation-bf,ardéﬁined
function, while /\Q and /\W represent observable changes, but
are not exact differentials of anything. '

In the case of an ideal gas we can think of E as the
total kinetic energy of the molecules, as indeed we did

when deriving the equation E = (3/2)RT.

Test for exact differential.
Tf X and Y have continuous partial derivatives, then
deYdy ils be an exact differential if, and only if,
= /ox. (See Piaggio, Differential Equatiomns,
appendix A.)
We can see that /\W is not an exact differen ial, for
/\W = p dv. This is 0 dp + p dv; Olgv =0, gp/ p =1, not
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THERMODYNAMICS.

Historical Background.

Sadi Carnot (1796-1832), the founder of thermodynamlcs,
was the son of L.N.M.Carnot, the "organizer of victory" in
the French revolution. L.N.M.Carnot was an army engineer.
He wrote on mathematics, military tactics and other topics.
He played a very prominent part in the politics and wars
of revolutionary France.

Sadi Carnot was a patriotic Frenchman. He was interested
in the application of science to industry. Britain had
derived great benefits from its possession of the steam
engine, vears before other countries. Carnot hoped that
scientific understanding of how the engine worked would
help France in its rivalry with Britain.

In Britain, the condensing & steam to raise water from
mines had been used as early as 1698, Round about 1770
there were in use steam engines in the modern sense - for
produc1ng movement.

"Science since 1500" comments that Brltaln-used steam .
engines for decades and never bothered to study them
scientifically. On the other hand theoretical studies were
produced in France almost immediately after the arrival of
engines there. This of course is typical. Britain,
advancing into the unknown, used empiricism, pioneering by
trial and error. On the continent, the industrial classes
were continually frustrated by working under the control of
aristocratic regimes; this indeed was one of the great
driving forces of the French Revolution. Unable to do what
they wanted, they spent their time dreaming and thlnklng
about the potentlal of the new developments.

Many useful concepts were already available to Carnot.
In 1738 D.Bernouilli had considered gas as a swarm of
moving particles, and had shown that an increase in
temperature would lead to an increase in pressure. He
also had the idea of Conservatlon of Mechanlcal Energy (in
frictionless processes).

Outline of Carnot's argument.

Carnot raised a fundamental guestion. He accepted the
idea of the conservation of energy, but realized that heat
energy, although existing, might be unavailable. (Pledge,
Science Since 1500, p.143,) He thought of heat being like
water, which drives a watermill by falling from.a height
{high temperature to low temperature). You cannot get any
more mechanical work from the water once it has reached the
lowest position available, - similarly for heat.

Carnot, like many physicists at that time, accepted the
caloric theory, the belief that heat is an enduring
substance. Count Rumford, in 1798, from the experience of
boring cannon, had come to believe that you could make as
much heat as you wanted by performing work. Conversely
heat can be destroyed when work is being done. Carnot did
not realize "that heat is lost as work is gained".{Pledge,
p.143.) This however did not prevent him from arriving at
correct and very important conclusions.
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For adiabatic expansion we have insulation that ensures
no heat enters of leaves. The external pressure is lowered
gradually, so the gas expands and therefore does work. This
work can only come from a reduction in the internal energy
of the gas. Thus dE = -p dV. Now dE = C dT, so we have

cdr + pav = 0. (1)
For a mole of ideal gas we have pV = RT, so CT= (C/R)pV.

Hence
0.

(C/R){p AV + V dp) + p av

This gives, on multiplying by R and collectirng terms
involving dv and dp ‘ '

p(C+R)AV + cCvdp =0
Let ' (C+R)/C = g. (2)

(In printed work this is always called
"gamma". As I do not have Greek letters on my printer,
is the best I can do.} The equation becomes

g dv/v + dp/p = 0 _
from which it follows that lnp + g lnV is constant.
Hence, for an adiabatic change

g

pVg = constant {(3)

Adiabatic changes are reversible; the same equation holds
for an adiabatic contraction.

Work in an adiabatic change.
Let pressure and volume change from p.l,v1 to pz,V2

adiabatically. Then, during the change p = kv~ 9 , where
K = p,Vy9 = p,V,7- (4)
Integrating p 4V we f£ind the work done is
(k/(1-9)1 .1v,' 79 - v, 1790,
By using eguation (4) we can show that this equals
(P,Vy - p1V1)/(1-g). From equation (2) we see that

1-g= -R/C . Using the equation pV=RT for the initial and
final stages, we eventually reach the simple formula

for W, the work done .
W = C(T1 -~ T,) (5) -

In an adiabatic expansion the temperature falls, and, as
expected, W will be positive. In a contraction the work
will be negative, that is to say, work will have to be done
on the gas to make it happen. .

Tt is useful to derive eguation ((5) by considering
the details of what happend during an adiabatic process. It
can be derived directly from the principle of conservation
of energy. At the start, the internal energv of the gas is
E1 = C1; at the end it is E2 = CT2 ; the work done comes

|
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contributions of BD and CA to the work done cancel out.

From equation (6) we see that the work done in AB is
RT., {1nVv —an1), where V, and V are the volume at A and
the volume at B. Now in the g¥aph we are using, the
x-co-ordinate is 1lnV,so 1nVv —an1 is simply the length of
the line AB. As ABDC is cfearly a parallelogram, the
length of CD is the same as that of AB. The expression for
the work in DC will differ from that for AB only in having
T, instead of T., and having a minus sign in front, as in
Da the gas is being compressed and work is being done
against the desire of the pressure.

Thus the work done in the whole cycle is

W = R(T1—T2)(an2—an1) (7)

Now the efficiency of the machine is measured by W/Q, where
Q is the amount of heat put into the machine in stage AB.
This determines how much coal has to be burnt. Heat comes
out of the machine at the lower temperature T.,, but this
is of no interest to the machine operator. As“stage AB is
at constant temperature and as internal energy depends
only on temperature, the heat absorbed is numerically equal
to the work done in AB, which we calculated above. Hence
Q = RT (an2 - an1) (8)
Thus the efficiency
W/Q = (T, -T,)}/T, (9)

This efficiency is a function of the temperatures alone,
and no machine operating between the témperatures T1 and T2
can ever do better.
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Calculating Pressure.

Force equals the rate of change of momentum, so we can
find the pressure on a wall by seeing what change of
momentum it produces on the particles hitting it per unit
time.

We consider a rectangular block, with sides in the
directions of the axes, with a wall of unit area in the
plane x=constant, at the end where x is maximum. A particle
with positive x-velocity, u, will hit the wall within a
time /\t, if it lies within a distance u/\t of the wall,
that is to say in a region of volume u/\t. We suppose there
are N particles in a volume V so the number of particles
expected in this region is Nu/\t/V. The number of these
expected to have x-velocity in u,u+du is (Nu/\t/V)f(u)du.

If the particles have mass m, each will carry the momentum
mu. This will be reversed on striking the wall, so the
change in momentum is 2mu for each particle. Hence the
change in momentum in time /\t is 2
=au

(2nm/v) At T2 21220 Pe au @ 2

Dividing this by /\t gives the pressure. To evaluate tge
integral we apply the partial differentiation operator /éa
to equation (10) above and change the sign. This gives

{90 w2 " gu = (1/2) TT'/2a73/2 Eon £18)

In equation ( 1}) we have the integral only from 0 to 0o,
so we need 1/4 instead of 1/2 in the expression in (12).
substituting this in (7%) and removing the factor th,’we
find the pressure per unit area is

p = Nm/[2Va]. ()

The gas equation is pV = RT, so we identify Nm/[2a] with
RT. This implies a = Nm/{2RT]. it is usual to represent
the universal constant R/N by k. Thus a = (m/2)/(kT). It
thus appears that the probability of the x-velocity being
in u,u+du is proportional to

_(1/2)mu2/(kT) Og

e du . o
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THERMODYNAMICS. 3,
Note. Some theorems,.that in a systematlc treatise would
have to be proved,_are here quoted ‘without. ~proof.

Equation using entropy. o
We suppose we have a. system, such as a. gas, the energy
of which can change only by heat being added or work belng
done. If E is the energy of the system, /\Q heat added and’
pdV work done, the conservation of energy shows that
dE = /\Q - pav. '
We have seen that /\q/T is. a perfect dlfferentlal dS, w1th s
the entropy. fhus our equation becomes.
dE = TdS - pdv . - (16) :
An important difference is that here:all the varlables are
functions of the state, unlike heat and work.
Thermodynamics can be applled to- the study of
radiation, as radiation acts in many ways like a gas
It is rather surprising that an exact formula for: the
relation between temperature and the den81ty of radlatlon
can be obtained. by. such general arguments.
Pressure of - Radlatlon R
Radiation can be locallzed in space. If a beam:of
radiation falls normally on a region of -unit area for s
seconds and is completely absorbed, the heat generated
comes from the region of volume cs, occupied by the part of: .
the beam that has just been absorbed, c being the velocity.
of light. By measuring that heat we can- calculate the
energy per unit. volume in the beam.. This is. known as. the
"spatial energy den51ty" (Planck, Theory .of Heat,p. 177) We
follow Planck by using u for this quantity. :
That radiation exerts pressure can be deduced from the:
conservation:of energy.  Suppose a beam of radiation falls
on a black body (i.e.: one that absorbs all the radiation)
of unit area, and we move the body a distance h  towards
the source of the radiation. The effect of thlS is that the
body absorbs. hu more units. of energy:in. the given time
than if it had been left alone.. If we-could move it .. . |
without effort, we would have gained this energy for
nothing. Therefore it must require a force p to make it
move, and the work done will be hp. Hence hu = hp, We have
the very simple law -
p = u. (17)
If the body was a perfect reflector, thls would have to be
doubled, p=2u.

Pressure on the wall of a container.

The radiation inside a container is directed randomly in
all directions. . By detailed:calculations. using
electromagnetic theory , Planck reaches the generally
accepted conclusion that the pressure on:.a perfectly
reflecting surface of the container is u/§ Other
arguments can be used to:arrive at this conclusion.

Planck points out that it is immaterial whether the
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external pressure on the piston is gradually reduced, and
the piston moves under the pressure of the radiation until
B is reached with volume V,. The temperature and pressure
are still T and p,. The radiation density throughout is
u, and so the pressure is p, = u/3.

In this stage, heat is drawn 1n, since the system is
doing work and there is no other source of energy.

The work done in pushing the piston out is (V2—V Ju/3.

There is also another demand. for energy. The“volume
has increased and the new space is to be filled w1th ’
radiation hav1ng density u. This requires (V }u.

Altogether in the first stage work (4/3)%V —V Ju is.
done, and so .this amount of heat energy,. H, mus be
supplied, A

='(4/3)(V —V Ju - {18)

Stage 2. In the second stage, B to C, the cyllnder is
insulated and allowed to expand further. 1t does more
work, which must come out of the heat contained, so the .
temperature.drops, and reaches the value T, at C. The "~~~
change is taken to be infinitesimal. The_radlatlon o
intensity, being a function of temperature, will decrease,
if we call the amount of decrease Adu, the intensity falls
by du. As p=u/3, p decreases by dp= =du/3. N

Stage 3. 1In thlS stage, C to D, the cylinder is
compressed with the small aperture again open, -and held
opposite the opening of a black body maintained at.
temperature T,. Work is done on the system, and heat leaves
it to keep thé temperature constant.

Stage 4. D to A. The aperture is closed again, and the
system insulated. Work is done on it and the temperature
returns to T.

All of thls 1s supposed to. be. done very slowly and
reversibly.. _

Now Carnot showed. that no englne can be more
efficient than a reversible one. It follows that any two
rever51ble engines must have the.same efficiency, namely :

-T, )/T Here T,=T and T.,=T-dT ; here again.we .
é ertl&g differentials for“decreases. ThuS'the '
efflclency must be dT/T.. ,

The work done in the cycle is the area in the P,V
diagram of the quadrilateral ABCD. S The sides AD and BC are
not truly parallel, but the dlvergences are such as-to be
negligible in the limit, and we may treat ABCD as a
parallelogram Hence this area may be taken to be
(V,-V,)dp = -V, )du/3. -

%he heat taken in during stage AB, was. glven in
equation (18).

The efficiency = work done/H, and so is

ydu/3 4w

-—=—=——=—-———--—-—- which simplifies to . --——- . .
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