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QUOTTENTS OF MOMENT FUNCTIONS. th

W.¥W.Sawyer.

Abstract: A formula is found giving the quotient of two moment

functions as a moment function.

1. Introduction. I have been trying to prove that L(s), the
maximum eigenvalue of the integral egquation
(1) L(s)b(x,s) = |, Bly,s) (1-sxy)™" ay
is a moment function of the parameter s in the sense that
(2) nis) = §,' mee)(1-sty7at
with the weight distribution, m(t), non-negative. This stems from
an earlier paper, (1) which considered an integral equation,
differing from equation (1)} above only in having the integration
from -1 to 1. This paper contained the history of the problem,
and presented a number of conjectures based on computer data.
These conjectures are equally plausible for equation (1).

If the solution é(x,s) is normalized so that é(0,s)=1 for all
5, by putting s=0 in eguation (1) we obtain
(3)  L(s) = I, bly,s) ay. |
If we can express $(y,s) as a moment function with weight w(y,t),
and if itsis legitimate to reverse the order of integration, we
shall be able to express L(s) as a moment function.

By a method involving iteration a sequence of functions,
én(x,s), can be found that increasingly approximate to a
solution of equation (1). I have been able to express the
earliest members, at any rate, of this sequence as moment
functions. To obtain normalized functions it is necessary to

consider &
n(x,s)/én(o,s). It is then desirable to express this
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A 4 x 6 Transportation problemn is as follows:

2.
8 = 13, Dl
Sp = 5y Dy
35 = 73 D3
Sy = 11, Dy
Total 36 D5
Dg
Total
Matrix
of
Unit
Costs

= 3,
7,
10,
2.51
2,
= b,

36

]

H

|

(a) Find a feasible solution
by N.W. Corner rule.
gb) What is its total cost?
¢) Can you find a better
(lower cost) set of 9
basie shipments?
(d) Can you (ig calculategthe opti-
(ii) guess mal solu-
tion?
N.B. Total cost of optimal solu-
tion = 125
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It is a great advanbtage to be able to formulate a
problem in terms of the classical transportation model if
possible, since computer programs for this case are
usually very much faster than the corresponding one for
general L.P. It has been estimated that about a third

of all L.P. problems found in practice turn out to be of
the transportation type.

Timings to compare with the above figures are given
by a problem Involving M = 30 warchouses and N = 1200
. customers, with which I was concerned using the special
- C.E.I.R. TS/90 transportation program on the same com-
puter. This took only 20 minutes to solve! (N.B., it
corresponded to M + N ~ 1 = 1229 equations of L.P.).

It should be noted that Phase I can occupy a good
deal of computer time in practice. Indeed, there are
mony problems in which the principal object is to find out
whether the system is at all feasible, never mind optimal.

Illustrative Problems.

The system: Maxinmize Z = 3x1 - 2x2
subject to Xy F x2.§_1
2}51 + 2x2 7 b

has no feasible solution, because constraints
inconsistent.

The system: Maxinmize Z = X ¥ X,
subject to Xy = Koo ]
5}{1 - X2 I=3

 has no feasible solution because of non-
i negative conditions.

. ¢y The system: Maximize zZ = 2xl + 2x2
‘Pﬁ subject to. xy - x, . =1
d ~o5Xy + Xy . 2

is unbounded.

D. The system: Maximize_ 2x2 - X = 2z
subject to X1 = X5 -1
~-.5:¢::L + Xo .‘..; 2

is bounded (z max = 4), but the values of
Xy and X, OTe unbounded.

Problems to try vourself.

1. HMaximize 5% + 3% | Solve gag graphically,
subject to 3x; + 5x, £ 15 b) by Simplex

}
5xl + 2x2 ﬂ;lo‘
g e N N TS, e
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Thus we introduce y, into row (1) and y, into rwo (2),

here, There is no need fo} an artificial varigble in

row (3), as the positive slack x. can be included in the

initial basis. The successive cdnonical forms of the

simplex steps are given in the following table in detached
co-efficient form:-

f Bagis Xy Xo Xz Xy *5 ¥q Yo b!
A 1 3 ~1 1 6
T2 S B -t oL s E
X 1 1 I .
w=10 -3 =4 1 1 w=10
X5 + 1 -3 + 2 .
o | 5/3 3+ | -1 = 1| 2 D
Xg ] S B I M 2
L w=2 ~5/3 -+ 1 4/% W=2
o
X L =25 ys | |25 | -5 85
Xq 1 /5 | -3/5 -1/5 3/5 1 6/5 A
X 1/5 2/5 1 -1/5 ~2/15| 6/5
W End of Phase I 1 1 w=0
z + g 1/5 | =3/5 | zf—g—
KXo} I M By 1
X3 1 ! 2/2% 3 B
%y N 1| 52 3
AE , 2 3/2 z=~3
|\/ e

With reference to the above graph, we have gone E, D, A in
Phase I and A, B in Phase II.

Timing on _an Electronic Computer.

Generally speaking, only the number 1 of constraints
affects the viming for most cumputer L.P. programs, and the
nurber of activibies n is usually irrelevant in this respectb.

3 Very often, the timing turns out to be proportional
to n’, so that if for instance, on a fast computer, a 100~
equation problem could be solved in two ninutes, it would

take 2 x 45 ninutes, roughly, to solve a 400-equation
problem on the same machine. (i.e, about 2 hours).

These times correspond in order of magnitude to
what was realis®ically achievable when I was at C.E.I.R.
by their ILP/90 progran.
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gquotient of moment functions as a single moment function.

2.Theorem. If, for summable functions W(t) and w(t) we have

(4) F(z) = §,' w(t) (z-t)7" at
(5) £(z) = §," wit) (z-t)7" at
{6) 0(z) = F(z)/{zf(z)}

then

(7)
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The Phase I Procedure (Illustrated by Problem C).

Unlike the transportation problen, or the case
when all the slacks are positive, an initial feasible
solution may not be available immediately in certain
problems. Indeed, a feasible solution may not exist.

i.e. it is impossible to satisfy the constraints with non-
negative values of the activities.

Consider the following system:~

Maximize

X
subject to Xy o+ 3x2-3 6
Xy + Xy s 4
X+ Xy u 4

and Xqy X5, 0.

When put into standarg form, this beconmes

Minimize z2 =~ x (0)
subjeect to X + BXQ - X3 = 6 (1)
2Xl Xy L =3y = 4 (2)
Xy + Xy t X = 4 (%)

and xj 0 Jd =1 to 5,
XB’ being a positive slack can go into the initial basis,
but not so xa'and X, which are negative slacks.

Graphical picture

z max = 3 at B(3, 1)

Introduction of artifical variables

Artifical variables J1y ¥p are introduced into the
rows that need them to give an initial basis.

A new objective function w = F1 +Tp + eeee. is

introduced and this is minimiged (as for Phase II with Z).
Whilst w is positive, Phase T lasts, until finally Phase I
ends with w = 0 and each artificial variable has been
eliminated from the basis (i.e, has becone non-basic),
Unlike what happened to X in Problem B, once an aptificial

1s removed from the basis it camnot return. If w cannot
be reduced to zero, the problem is infeasible.

/3
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Problen R,

Consider the following problem in 2 wvariables:-

Maximize 2 = 2% + Xy, (1

n

< 6
D (2)
and Xy, X, > 0 (3)
1t appears that here we have m>n (i.e. m = 4,

= 2); bubt when we put in the four positive slacks

¥z1 Xy Xgs Xgy We have m = 4, n = 6 with n<n, as it
3T T4 TH5r T
should be. -

Graphical Interpretation of equations(2).

If we plot X, against X5 On a graph, we need only

concern ourselves with the positive guadrant, as X120,
x230.

Also the constraints (2) above forn four gtraight line
houndaries:- _ :

foq

4

Tomay =10 at D (0 7)
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: Types_of Solution C?<Zé(

v 1., A feasible solution.

Any set of values of the xj which satisfy the

.iconstraints (2) and non-negative conditions (3).

. (e.g. %n Problem B, any point (x;, %,) Iu or on polygon
. ABCDEF).

"2, A basic solution.

A solution of equations (2) obtained by letting

" n - m of the variables be zero, and solving for the

© remaining m variables. The m chneeon vapriables constitute
~ what is called the basis.

A basic feasible solution is defined as a basic
solution of equations (2), which also satisfies conditions

(3.

For example, in Problem B, when the slacks are added,
equations (2) become:-

Xq 2x2 + xg - | = 10
xl + XE ‘ -+ xq' . - &

| o (2
X - 2x2 : Ty Xg = 1

Here we c¢an set 2 ogt of. the 6 varisbles zero and solve
for the other 4 in Co, = 15 different ways, viz:-

1 2 3 45 6 7 8 9 10 11 12 1% 14
0O 0 0 10 14/% 11/2

| 0 6 2 1 2 4 13/3
ixz' 0 5 6 -2 ~} 0-.0 0 O 4 83 9/ 2 5/3
%y 10 0 -2 14 11 0.4 8 9 0 0 0 2 7/3
4 6 1 0 8 6 -4 0 2 5 0 -4/3-7/4 O 0
%5 2 7 -4 0 24 -8 -4 0 1 4 0 ~5/4 0O -2/3
¥ L 11 -11 -3 0 -9 -5 -1 0 7 53 0 1 0
A F B E D

It is seen that nine out of the 15 basic solutions
are non-feasible as they violate the non-negative conditions.
(The 6 feasibles are marked A to F in tableg

Also the 6 solutions which are feasible, correspond
to the co.mers ABCDEF of the polygon (shaded on graph). This
is & property of basic feasible solutions.

o e R T TR i P i P TS e 4 S A e L

With 2 variables, we always get a convex polygon like
ABCDEF; ;

With 3 variables, we always get a convex polygon, with
basic solutions at corners;

AT —
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5 T%:&
9PRINT
1 0PRIN]
20PRIN"
30PRIN"
40DIM
50PROC!
9Q*KEY"
100FOR (
110PROCI
120NEXT
990 END
1000DEFPI
1010 FOR|
1020 FOR
1030 A(O
1040NEXT!
1 050NEXT
1060A(0,!
1070ENDP]
2000 DEF!
2010LOCA!
2020F0R 1
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played a decisive role. In analysis we are .much concerned

‘with questlons about limits. For,both real and complex
_{numbers, a .sequence, of numbers zﬁ 1s tendlng to a 11m1t L if

the distance of zn from I, is tending to zero. He “decided

that “if 1t was p0551b1e to flnd a satlsfactory deflnltlon

.of dlstance between two: mathematlcal objects (of any kind),

it 'would be possrble to find theorems about these ‘objects
analogous to the theorems about. real and complex numbers.

The first questlon ‘then is - what is a’ satlsfactory
definition of distance? He looked at the tradltlonal
the’” fOllOWlng very 51mple ones;- :
1. Distance is measured by a real number, whlch lS never |
negatlve.'

2. A distance is 2 zero 1f, and only 1f ‘1t 1s.the dlstance
_.between a pdéint [and itself. '

.. 3. The dlstance from A to B 1s the same as the dlstance from
.'B to A. .

‘4. You cannot shorten your journey by breaklng 1t "1f you go

from A to C, and then from C to B, the total distance cannot

.beless than the distance from A to B. (It may:of course be

equal, 1f C lies on the direct route from A to B: )" 'This is
known as the triangle axiom. It, corresponds to:.l

" Buclid's remark that the sum of the lengths of tﬁor51des of

a trlangle must exceed the length of 'the thirdiside,. i
Frechet's 1nvest1gat10n was extraordlnarlly fruitful., It

was found possible.to find a satisfactory definition for the

distance between two matrlces, two transformatlons, two

;‘functlons, ‘two operatlons that ‘may involvé. 'differentiation
“and 1ntegratlon. At one.- blOW,rthlS opens the door to a whole
"series of .regults’ concerning” the most ‘varied 51tuat10ns.

L

It is.often p0551ble to.find. .more than one ;:;“
definition of distance for given: objects. For. 1nstance, on a
chessboard we can definé distance as the minimum humber of
moves a king needs to get from one sguare to another. We get

a dlfferent definition if we consider a rook 1nstead of a
Ev'klng."“ Optlons can equally well arlse 1n more serlous

. mathematlcal contexts. LT

";ij,The distance: from A to B 1s the length of AB We now

'R

‘consider ' defining length!’ Of ‘the many p0551ble ‘definitions
-we " shall here con51der only those that’ lead " to our usual

f}geometry, or to a geometry very similar. to it In all
.the spaces now to be listed, . Pythagoras Theorem is: true in

some sense. "All _these.spaces are’ vector spaces. d'l -

- The! symbol ||u|| Wlll be -used for the’ length:of the \q/Jﬁ

‘vector u. As v-u is the vector that goes from the .point u

_to the point v, ||v-u[| gives the dlstance of the point u
'“from the p01nt V. T _

I

LENGTH.,"”“ O o
"1 Euclldean space -of 2 dlmen51ons.lﬁ."
If ';_(u1,fu ), we deflne length by ..
2 - 2. 2 e -
I |u] | o + u2 = R

e

With the help of" Pythagoras Theorem. we can ‘defihe

oo i
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- o The distances between the p01nts 80 obtalned for:j__jg_
various functions might give us-a useful way of measuring -
the distances between .the functions. However, the method is
rather rough  .and ready.: How big, should n be ? Why choose
the mid-point of each interval? . : Lo
Now a sum resembllng that just wrltten would appear 1f

we were maklng an estlmate of the value of s q f(x) dx

This suggests that we mlght deflne the length of the
functlon £ by 5" e
- llfll = 1, q £ fiax . L

This leads to somethlng qulte novel -We _can deflne a dot‘
product for this space, and thus find a-meaning for one
function being perpendicular to another. '
-The work follows the same pattern as- before, but -
with integrals instead: of-sums. o v‘;-“
When: we were finding:the condltlon for u to be
Terpendlcular to v, -the length of -the hypotenuse was .

I(V...UI) + S0 the condition was . “" ’- '
2 2 2.. . .
[ (v-u)[] L o B
If u corresponds to f(x) and v. to g(x) cv-wswill o
correspond to g(x) - f(x) . With the: deflnltlon of L
length just found this condltlon w1ll become
c2 = a2 + b where S B

ot o ax o |
T L P

We now need to mullply out the bracket that appears ln c2
This gives - Lo T
c —$ T g(x) - 2f(x)g(x) + f(x) dx.‘

The 1ntegrals of f(x) and g(x) appear on - both s1des of the
equatlon c2 = a2 + b2 ’ and cancel just as the squares did
in the earlier examples. Agaln we. d1v1de by-—2 to arrlve at”
the deflnltlon S T L oo

f.g $ 4. f(x}g(x) dx
, . N PR foen e
We shall say that the functlons _are perpendlcular 1f thlS
dot product is zero. '

"Orthogonal” is a synonym for "perpendicular" and:it-is.
the custom to-day to speak .of: -orthogonal. functionsr<rather
than perpendicular-ones.:. I do-not know the redson (for this}
Perhaps:the idea. of - functions being:pérpendicular:is felt. to
be rather shocklng, and. the more learned word lS used to. ..
lessen the shock‘f O U B B RSN SR B PY Q:u:c .

iV J;T f o Ty " M s
: H - . . - B W
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fact is extremely close, If We'take ua_ - as ‘the' vector
f-representlng 51n nx, equatlon (5) can be wrltten In.u = 0,

which means that the ‘sinesare represented by mutually
perpendlcular Vectors, whlle equatlon (6) says :
) f-'ll3 03 _113 .113 r . """' .

Wthh 4.8 of exactly the same’ form as equatlon (3) earller.

- Thus flndlng -the -coefficients .in a Fourier ‘series: “turns
?Aout to be® justfthe problem -of . expre531ng a- vector ln ‘a:-new
f:system ‘of perpendlcular axesy L Ll o

This immediately suggests : a‘thought There are many Ways
to choose a ‘set -of :peérpendicularaxes. <: There must be many
other systems -of ° ‘perpendicular’ functlons, ‘from which we"
could derive series by exactly the samefprocedure. Ohe" such
-'system is ‘mich 51mpler, and could ‘even ‘be ‘used -to compose

problems An beglnnlng calculus, i all "the functions in it are
t‘pothomials.if: o T »aiz!:fjllﬁﬁq S
. ORTHOGONAL, POLYNOMIALS. @& | © = - S e e :*

With [-1,1] as the ba51c 1nterval let F (x) gl
F (x) X, F (x) xt_:1;f,f f_ Jizilm_
5x%r73x, F4(x).= 35x4 -30x2 + 3. A

""""" -

F (x)

You'rcan “éheck that these are orthogonal LIThé ‘workitcan:
reduced by~ u51ng ‘the following" observatlon' the dot product
involves/ the vectors llnearly. For' example,aEAC‘Y‘ N
f.(au + bv + cw) ‘a({f.u) £ b(fv) & c(f.w) Thls-means
that, if £ is perpendlcular to u, to v and to w, it is bound
to be perpendicular to au + bv + cw, for any- ‘dib,cs - -This
holds for - any nunber of. vectors in:the: bracket° 1f f is
perpendlcular toeach of them, 1t 1s perpendlcular to any
linear mixture ‘of them. -

So, if we check that 'F, (x), for example, is perpendlcular
to 1, -to x; to xz and to: x3, it . dis - bound: “£o “be pérpendicular
to any linear comblnatlon of these, hence to any polynomial
. Wlth degree less than 4, hence ln partlcular to F (x), to

(x), to F (x) and to F (x) The same 1dea can be applled
t?:F(x)

Fifther polynomlals 1n thls sequence can be obtalned by

’Ef'\ﬂ 2

taking F (x) f, (d/dx) ( 71)9:_. That F (x) 1s'

perpendlcular to xm 1f m<n can be proved by 1ntegratlon by —

'ﬂ'parts. Observe that (d/dx) (x -1) -—1s zero for x=\—1 and
x=1 if s<n j do not expand any of the powers of x2—1
If - multlplled by ‘certain constants, ‘these polynomlals

glve the Legendre polynomlals, which play an 1mportant part
“in electromagnetic ‘theory “and otheéf branches of- sc1ence.
They can be used to build series in much -the same- way that
- sines-are:for Fourieér serles. lee Folurier" ‘séries; "they are
capable of representing functions that have'disc¢ontinuities.

Page 8
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7 (Opening pardgraph) "It 1§ & melancholy éxperiénce for a

luck of H2

A NMATHEMATICIAN'S APOLOGY.  G.H.Hardy. (Published 1940. )

- professional mathematician to find himself writing about

" mathematicdsy Thé FUHETIoh of "a mathenatician 18 to do something,

to prove new theorems, to add to mathematics, and not to talk

‘abodt what he 6r othér mathématicians have done.  Statesmen

despise publicists, painters desplse art-critics, and physioclogists,

" physicists nxd or mathematicians havée usually similar feelings ;

there is no scorn more profound, or on the whole more justifiable,

than” that of thé imen Wwho riake for thé nien WwWho éxXplain. Expositilon,
eriticism, appreciation, is work for second-rate minds. "

' " Probably it is 'a blological necessity for a research worker

to feel like this. There would be serious trouble 1if one

grafted the brain of an eagle into the body of an elephant. Hardy

continued t0 work at the theory of numbers through geveral of the most

Tdisturbed decades in history. Compare Binstein's Gereral Theory of
Relativity, 1916 ; contrast Einstein's attltude. Both hated war. ., S

"Not criticise either i different genes. oo .
p 88-9. "It is plain now that my life,for what it is worth, is +

finished, and that nothing I can do cand perceptibly increase of y
diminish its value. It is very difficult to be dispassionate,but I i

‘count it & "success" ; I have had more reward and not less than was {
due to a man of my particular grade of ability. I have held a series
‘of comfortable and Mdignified" positions. I havé had very 1ittle (
trouble with the duller routine of universities. I hate "teaching" [

“and have had to do very little, such teaching as I have done having ]
been almost entirely supervision of research ; I love lecturing,and

have lectured a great deal to extremely able classes ; and I have always
‘had plenty of leisure for the researches which have been the one A

Cgreat” permanent happiness of my 1ife. :

p-90 "I have never done anything "useful". No discovery of mine

has made, or is likely to make,directly or indirectly,for good or ill,

the least difference to the amenity of the world....Judged by all

practical” standards, the value of my mathematical 1life is nkil." )

p.56 (defining "useful") "Mathematics may,like poetry or nusic
'promote and sustain a lofty habit of mind', and so increase the {
happiness of mathematicians and even of other'people'} but to defend”
it on that ground would be merely to elaborate what T have said -
"already. What we have to consider now 1§ the 'erude' utility of J
mathematics. "
. |
p7l. "I was not thinking only of pure mathematicians. I count
‘Maxwell and RBinstein,Eddington and Dirsc, among ''real't mathematicians. 7
The great modern achievements of applied mathematics have been in !
“relativity and guantum mechanics , and thesé subjects are,at present
at any rate,almost as "useless" as the theory of numbers. "
T ypitten ‘about five years before the atom bomb.
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Divide the fraction curriculum into unlts and
within any ome unit (lasting at least two weeks
and often three or more) limit the muber of
fractions the children are to work with and

giw}e each & very specific meaning.

Within each unit, the fractions that we use are made specific by giving
the whole mumber “one” a fixed and narrow meaning. The "ones" that we
use are described beldw- -

a) Concrete "Oned” Fractions can be glven specific meanings by

attaching them to scme concrete material., For example, in our first unit

we call the orange Cuisena.ire rod "one". The yellow rod is thus named

"one ha.lf", 'bhe red rod "one £ifth" and the white rod "one tenth"

(omnge) |1

(ye.uow)' 11/
. _____{1/5

o e — _11/10

In this unit, which takes perhaps 3 weeks, these fractions and their
multiples are tl_.ze only ones to which the children are éxpt)sed. F\lryhér-
more, during this period,'all symbolic work refers excluslvely to the
rods. Thus for example, the children are taught that the mmeral 3/5
means three of the fifths,\{‘.ﬁe.t 1s, three red rods., -Even with this kind
of nasrrow understanding t-.hey can discover that 2/573/10 by comparing a
"train” of two reds with a train of three whites. Similarly, it is easy
for them to see that 5/10 = 1/2. However, at least temporgrily, thé only

meaning here Is that a traln of 5 white rods is just as long as a yellow.

(red)(red) 2/5 ' (yellow) 1./2:
wivlvl 3/40 wiv wiwlw| 5/10
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M/mé;

From Professor W.W.Sawyer,
34, Pretoria Road,
Cambridge CB4 1HE.
19th September 1989.

Mr. R. Mirchandani,
Penguin Books Limited,
27 Wrights Lane

W8 5TZ.

N

Dear Mr. Mirchandani,

Thankyou for your letter of September 5th.

You say something about the possibility of a new preface. At
present of course it does not have a preface but goes straight to
Chapter 1, which was designed as- an opening, and I should like it to
stay that way. You may have in mind the fact that it was written nearl;
50 years ago. I think you might deal with this in the publisher's
blurb, something along the following lines ; this book first appeared i
1943 in the Forces Book Club. It was designed to help those in the
forces who needed to become engineers in a hurry. However the fact tha
it has stayed in print until the present indicates that it has been
useful to readers other than those for whom it was originally planned.
Since 1943 there have been changes in money, weights and measures.
References to the old system are only incidental, and it does not seem
necessary to change these. N

I think you have my biography up to 1976, when I retired from the
University of Toronto and came, with my wife, to live in Canbridge
{England). Since then I have written a book showing in detail some
practical applications of modern mathematics - a thing the 'Modern
Mathematics" campaign in U.S.A. notably failed to do. I have also
written two booklets with problems and topics to keep the gquickest
pupils busy when they have finished the regqular stint of exercises.
Since 1977 I have been meeting a small group of interested secondary
school pupils on Saturday mornings. ;

I hope you find this useful, !

With best wishes, E

Yours sincerely, :
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Change of axes. s I - D .

A matrix is involved Whenever we change axes. The
point (x,y) in our original axkes is associated with the
vector (x), which 1s equal to x(1) +_y(0). This

Ay) ) - (0) ~ .(1)y . . :
equation ‘brings out the fact that (1) and (0) .. are ‘the
(0) (1)
unit vectors ‘along the ‘axes. When we change axes, -other
vectors are made to play these roles, so we 1nterpret
the point (X,Y) as correspondlng to the vector
X(a) Y(c) .

{b) + cAady o Herenof course the co-ordinates (a,b)
andi(b;d) refere to our original graph paper. In the new
system they will be (1,0} and (0,1). Accordingly the
connection between -the 0ld and new co-ordinates is.given:
by the equation‘, (x) = X(a) Y(c) i.e. x=aX+cyY

- oA(y)- (b)Y * (a)y - =bX+d¥ .;
whlch is equlvalent to the matrix equation (x)_(a c)(X}

CAy) (b A)(Y).

If the co—ordlnates in the old system are: the -components
of the vector v, and in the new system of the vector V,
these will be: related by some matrlx S, so that v=5V. We
shall use V=5 1v when we need to express the new
co-ordinates 'in terms of:-.the old ones. . .

‘It is important: to notice: that a matrlx express1ng a-
transformation and a matrix defining a- conlc ‘behave -
differently under change: of axes. . . . L

For the transformation v -> v¥ we have v* M. .
When the axes are changed by the matrix 8 we have v=8V
and v*=8V*¥, so SV¥ = M8V, which means V*=§ MSV, and the
matrix for the transformation in the ‘new axes is. S~ ' MS.

‘ On ‘the other hand when the matrlx M defines the
conic VTMV = c, v SV and vT = VTST Accordlngly the

conlc VTMV c’ appears in. the form V S MSV =:c;.andfthel

matrix appearing here_is=S MS, which is not, as-.a rile, .

the same as S 1MS, which we had for the transformatlon.
Later we shall meet an 1nportant exception in whlch

the matrices still. agree 1n the new system..

Page 2
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If we wri&e Q for the matrix STS, we want UTQV to be
the same as U'V, whatever U and V are. Let U and V be
the column vectors WiEh'el ments U. and. V., where i goes

from:1 to p. \T%%n-U'V.= U,V,, the sum being from 1 to

n, while U Qv |
to n.:;Here;the'coeffiélentjof UiV.'is Qu. InU
coefficient . of U,V. is:1 'when i=7 and 0.

U.0..Vj, I &nd j being summed from 1
'V the.

unequal. This mdans thaf O must equal the identity -
matrix, that is, that s°8 = I. '

We have 'shown:that: the transfgrmation S preserves .
scalaerrodg?ts:if,&and only if, 878 = I. This means.
that 87 '= § ! ;-the. inverse and the transpose must.bé._

the same. - This means that, when we are dealing with an.:
S of-this: type,.we need not bother whether a matrix M.is’™
being ‘used to.define a transformation. or a coniec. Both .

will 'behave in:the same way when.they undergo-S.

A transformation, 'S, that satisfies: this conditién  '"

is said to be orthogonal. A matrix that specifies.a .
change: of position- by. rotation or reflection is clearly
orthogonal; we know that:lengths and- angles are not

changing.: The same applies if we are changing axesTby;;“

rotating or reflecting. them.

"Usually finding:the inverse of almatrik;is,liéblé”to;f

be awkward.. In the,case of an orthogonal matrix this
difficulty disappears. - We simply transpose it. (.. .

The determinant of an Qrthpgpnaljtﬁanéfﬁfhdfion.'.T

A matrix’and its transpose have the same-determinant..

Also the: determinant of the product of two matrices is

the‘producE_ofutheir,determipants;,‘If_we cthidér.the‘”ﬁ'

equation S°S = I, and take determinants, we see that the

square of the determinant of S must be 1. Accordingly,

the determinant ditself of S:must be +1 or -1, and thus
orthogonalmtransformatiqns‘fall-into-twoiclassesfu"Thqse
with determinant +1 turn out to be rotations;they can be
achieved,byyaxcontinuousAmotiqn. Those with determinant
-1 cannot. ;. We.can imagine a right-hand glove being

transformed into a left-hand glove, but there is no way.'

in which we can actually turn the .one to become the .
other.: ce oo : S ' '
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— §{1..42857143)=-4.6209812... e
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. -B(1.85714286)1_1.43594305

B(2)==1.01907127

C B(2.14285714')=0.719205181
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/2 = (1/2)2 72 +(241) 24(2+2) P tuenrnnnnnnn.
-3 -5 -2r-1
—Bzz - B4z + s seeces _32r
+R (7)

where R stands for a remainder term involving an infinite
sum. The top line here, if we ignore the first term, is
equal to L'"(z). Solving for L"(z) we find

L"{z) = 1/z - 1/(222) +Bzz_3 +B4Z_5+....B2rz_2rd1 -R (8)

Integrating gives
L'(z)=1n(z)+1/(22)-B,/(22%)-B,/ (4z%)...-B, _/ (z***") »x (9)
where R*¥ is a remainder found by integrating R.

Integrating again, we have

In(z!)=Ct(2+0.5)In(z) -z +B,/(1.22)+B,/(3.42°)+. .. (10)
This equation is to be understood in the sense that, if

we take a finite number of terms, this will differ from the
left-hand side by less than the magnitude of the first term
that is neglected.

Tt can be shown that C = (1/2) 1n(2]]). The terms at the
beginning give the usual Stirling approximation.
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If'OP is -a dlsplacement and- OF represents a force, the
work done by the force in the dlsplacement is’ '

(1) 1 (2) 2, whlch we shall wrlte X F ..

Sums. contlnually occur in. tensor theory, and the tensor
convention stlpulates that we sum over any index that
occurs tw1ce, as "i does here.._cnqgﬂ anv$ mgo!n@v

The ralsed lndex i-in xl 1ndlcates that we are
specifying x in- the manner (i), known as contravariant.
specification. The-lowered index-i in F indicates.that E:

is being represented in the manner (11), covarlant‘

specmflcatlon. A
.-Books often refer to covarlant vectors and - -
contravarlant vectors'". . This language I think is likely -

to confuse learners. There are two different forms of -
representatlon, not two different: klnds of vectors ~ it is
hard to see how there could be.,. S SR '

Note that X F, is the scalar product, X. F in vector ,
notation. -

We are perfectly free to represent x in the covarlant
manner.: If:A-is the angle between . the axes, by dropplng
perpendlculars we. flnd

Xy =X (1) + (2) éds-h-f'

xjmz,x(1) cos A + . x(Z) -L



B — T i

[k of T 2

Change of,Variables.

Thus x"y, is invariant. What -does thlS tell us about the
way vy is transformed when axes are changed?

Suppose we bring in new variables, Xl;'defined‘by
i

i _ J
t 4 eeeeae(3)

Then xlyi = tlein. In the new system{this
should be XJY. and we can make'this;so:forievery=Xj only
by taking ' -

' Y- = t : o‘ooo 4 :

R B L6 S .( ?‘ . S
The transformations (3) and (4) differ. (3) glves x in
terms of X, -(4) gives Y in terms of y. Thus we have
different rules of transformation for 'vectors shown in
covariant form and in contravariant form. .

Note that when perpendicular axes are belng used, the
two modes of representation c81nc1de, as is eV1dent when..
the angle A in Figure 1 is 90 Br

Now g,. too must be recognlzed as a. tensor, for it tells
us how %3 calculate the length of a vector, .a guantity on
which-all. systems are agreed. -How does it transform° As
before we introduce new co-ordinates x by xl‘= t JXJ

Then g% xJ = g, t t:j prq, ‘which ought to be quxpxq

i3 lJ P q
Accordingl G =t t:l «es (5
OFEINIY Bpq ptq%iy = 15) |
gives the transformatlon for g Note that the :

transformation is the sdme as the one we would use 1f 954
was the ‘product of two vectors x. yJ ‘ ThlS property is J

sometimes used to deflne a tensor, by saylng that a tensor
transforms like the product of vectors. I have never found
this -approach -particularly helpful.

A tensor with two subscripts does very much the same jOb
in this: symbolism as:a matrix in ordinary gector—matrlx
notation. If we write equation (2) as 0P = x'g..x’ so
that summation is .over adjacent pairs of symbols ;J-_
it is seen that, in matrlx notatlon, we would have an

expre551on of the form x Mx w1th a matrlx M. ThlS 1Stthe
usual way to express a quadratic of two variables in
matrix symbolism.

It is also possible to 'define a tensor: rcorresponding to
the matrix, M, for a mapping y = MX.



Do ps
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the velocity of a particle lies in the interval u, u+du.
The chance that the velocity of a particle has components
within u,u+du ; v,v+dv ; w,w+dw is then

f(u)f(v)E(w) du av dw. If we have a small reglon,_of
volume /\V in the (u,v,w) space, at or around the position
(u,v,w), the chance of the velocity lying in this. reglon is
f(u)f(v)f(w) JAN S The reason for bringing in /\V is that
this quantity, being an element of volume, does not depend
on the choice of axes of co-ordinates. = Since no direction
is singled out for special privileges in a gas, this
probability should not depend in any way on the direction
of the velocity, but only on its magnitude. Thus

f(u)f(v)E(w} should be a function of u2+v2+w2 alone. The
same will’ be true of its. 1ogar1thm. Accordingly we shall
have

1ln f(u) + 1ln f{v) + 1ln £(w) = é(u +v2+w )
for some function é. If we differentiate partially with
respect to u we obtain ‘
£'(u) v, 2 .2 2 ' '
fTETﬂ = 2upd' (u+v +w’) . /
. . ' X L] . .
Slmllarly we have £'{v) _ 2V¢'(u2+v2+W2)
£{wv)
and £'{w) _ v, 2 2 2
) = 2wd' (u"+vT4+w")
it will be seen that £f'(u) _ £'(v) _ £'(w)
uf(u) =~ viE(v) ~ wi(w) .

This can only be so if £'(u)/[uf(u)] is a constant,C. Then .

f'(u)/£f(u) Cu, and 1n f(u) = (C/Z)ﬁ2 + constant.

Hence f(u) = A exp[(C/Z)u ] for some constant A. 'Clearly C
must be negative; otherwise the velocity would be '
overwhelmingly likely to be infinite, If C/2 = -a we have

-au2 ~
To obtain A in terms of a, we use the fact that the
probability of the partlcle hav1ng some ve1001ty is 1.
Accordingly _ S 0o
-1 = ~00 A exp(—au ) du ‘ '
A standard result is s_oooo exp ( au2 du = TT1/2 -1/2 (10)
Hence

A = TT"1/2a1/2 énd - 5 .
fw) - TTV/22 (1)

Q’ Page 2
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(1/2)kT. 2

Thg klnetﬁc energy of a molecule is (m/2)(u 4V +w ") s ASC
u ,v. and w .all-have the same: value,_lt follows that.the
average kinetic energy of ‘a molecule . .is (3/2)kT.. As:a. mole'
contains-N molecules, the kinetic: energy: for a-molé is: ;
(3/2)NkT. As Nk=R, it follows that the klnetlc energy per -
mole of 1deal gas 1s glven by e ; PR

i N _i : (3/2)RT - ?t R
The results here .are: 1n accordance w1th a general

pr1n01ple known asg the equlpartltlon of energy, that: the. o
average energy.of a: partlcle has (1/2)kT for each degree ‘of
freedom.,i-;.:,;_ : R S TPt SRR L
Line- Integrals. Exact leferentlals.eu”,‘w' R ‘ o

The ‘role-of Line: lntegrals ‘can be seen. by con51der1ng o
the calculatlon,of_the_work"done_on a-mass, which moves
along a:-specified path-.in a field of force.:': Thetworkfdone'
by a force (X,Y) when the mass:movesithrough: (dx;dy) 'is.
Xdx+Ydy. X and Y we:suppose.to. ,be. known functions of x,y.
A convenient wayito spec1fy the path followed is to:take x
and y as functions of a parameter t; x= x(t), y=y{(t). Then
X and Y will. be deflnlte functlons of it.: ?he_work done. - i ~
will then be : i":'.ﬁ:‘_er Frooon - . .:T'_. : U

%) x (t) + Y(E) v'(t) dt,

e

taken between 't and Eo correspondlngtto the beglnnlng and

the end of the Bath The integral will normally be
written as de+Ydy, with an: 1ndlcat10n of the path to be:
followed. - s

For 1nstance, if- we wanted the path to go round ‘the -
triangle with corners (0,0}, (1;%); (2,0} we- might take
from t=0 to t=1 x=t, y=t
from t=1 to t=2  'x=t, y=1-t
from t=2 to t=4 x=4-t, y=0.
This rather elementary example is given, so that theré'‘is: .=
no sgense ‘of vagueness or mystery .in the coricept: of a
line integral. - Curved paths . of course.require ! only
the - 1ntroduct10n of -higher  powers of tu (oo

If the :field of force. ~should happen to be: one- that has o
a potentlal the work done in going from:A to-B will equal: . N~
the change in the value of the potential from A to B,
whatever path may be taken, so the value: of ‘the 1ntegral
will not depend on‘the path.: The 1ntegral taken around a
closed curve will give zero. In this case we say that
Xdx+¥Ydy is-an.exact differential. @

When the value of the integral - depends omn the path i
taken, Xdx+¥dy is said not to be an exact differential, and
the integral around a closed path may-fail-to:berzeré.- ur:"
This happens; "for :example, if X=y, ¥=0, as can -be-verified
by calculatlng the integral for the path spe01f1ed above."

It is obvious that the value of thls “integral -must depend

T Page 4
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equal.. . : : e o :
The Flrst Law allowed us- to deflne a-new- functlon of

state, the energy,E. -The Second Law: leads. to the
definition of a new. functlon of state, the entropy, S,
though this is far from obvious. Clau51us, who introduced
the concept: of- entropy in--1854;.1is regarded as the founder
of physical chemistry. (Pledge, p-145.)

There are:.two lines of thought that  suggest the - S
existence of entropy. I find it surprising- that. Clau51us
was. able to- reach- this- new concept, if he did it from the
first of these ‘which runs as follows., ‘Let: /\Q ‘be the
amount of: heat. taken in the part AB: of the Carnot cycle, - -
and” /\Q the amount taken in- in' CD (thlS of course is
negatlve) / We have - .

/\Q1 % RT (ln Yz ~ 1n V1)
S /\Q2 = - RT (ln V2 —‘ln_VT)F | |
It follows-that /\Q1/T '— /\QZ/T #fO;',_;d_'. : _ !

Now the left hand 51de of thlS last equatlon 1s what we :
would get if we found the line -integral around ABCD of do/T
(if for once we allow ourselves to erte dQ for the
infinitesimal amount of heat taken in). This means that we ~
are dealing with an -exact dlfferentlal there is a function
of state, S, such that, in an 1nf1n1te51mal change, /\Q 7ds.
S is called the entropy._' P

This result has been found only for a Carnot cycle.
There .is then -a -lengthy argument to show- that any-. -
reversible cycle can be approx1mated by a comblnatlon of
Carnot cycles:

The second approach demonstrates the ex1stence of such
a function of state for -an ideal- gas, and thus -suggests :
that such a functlon may ex1sts in other 31tuat10ns. For an
ideal gas,’ . . :
i /\Q = ¢ 4t '+ (RT/V)dV R
which is clearly not an exact dlfferentlal - However, if we
divide by T we get

/AQ/T = car/T RdV/V

whlch clearly 1s an exact: dlfferentlal so entltled to be

‘called ds with

'KS,; C.ln.T + R 1n V + constant. o )
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It is interesting that we can reach the main point of
Carnot's argument without any detailed calculations about
the behaviour of gases or other substances. His theorem is
this; - no engine can ever be more efficient than a '

reversible engine.

Suppose the reversible engine works between the
temperatures T and t. No engine, working between these
temperatures, can produce more work for a given guantity of
heat. For suppose the reversible engine can take in H
units of heat at temperature T and use it to produce W
units of work at temperature t. Being reversible, it could
take in W units of work at temperature t and use this to
give out H units of work at temperature T. WNow suppose
some other engine could do better and change H units of

heat at temperature T to W' units of work at temperature t,

with W' > W. Carnot argued as follows;-

First, let the improved engine change H units of heat at
T to W' units of work at t. Use W'-W to do some useful
job. This leaves W units, which the reversible engine can
change to H units of heat at T. Repeat this process. Each

- time we get W'-W units of work, and end back where we

started. We have perpetual motion which Carnot believed
was impossible. '

Here we have an essential theorem of thermodynamics,
freed of technical details.

The Carnot cycle. ]

The mathematical implications of this theorem are found
by considering a particular series of operations, known as
the Carnot c¢ycle, involving the expansion and contraction
of gas, with heating and cooling. We suppose the gas to
obey the equations for an ideal gas. This might seem to
bring in an element of unreality. However the A
behaviour of actual gases at sufficiently low pressures
approximates very closely to that of the hypothetical
perfect gas, so that in principle it would be possible to
carry out an actual experiment as close as one may wish to
a Carnot cycle.

All the changes in the volume of the gas are to
be carried out extremely slowly. Some of them are to take
place at constant temperature, such as might be achieved by
having the. gas in a metal container in contact with a large
mass of water. These are known as isothermal. Others are
to be done in such a way that no heat can enter or leave,
the container being surrounded by insulation; these are
called adiabatic.

As the Carnot cycle involves both these' processes, we
need to calculate the work, heat and pressure
changes involved in each of them, before we can consider
the Carnot cycle itself.

Adiabatic expansion.

Theory suggests and experiment verifies that the
internal energy of a gas depends only on the temperature.
For an ideal gas we assume E=CT, where E is the energy and
T the absolute temperature.
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from this decrease of energy.
Work in an isothermal process.

This is a process in which the temperature does not
change so T is constant. As pV=RT for a mole of gas,
p=RT/V and p dV = (RT).dV/V. Integrating this leads to
logarithms and we find _
W = RT.1n(V,/v,) (6}

The energy of the gas, being a fundétion of temperature,
does not change, so , in an isothermal expansion, this work
can only have come from that amount of heat being absorbed.

If the gas is compressed, V, < V., and the work done
by the gas is negative and that amount of heat comes out
of the system.

Graphing the Carnot cycle.

In the Carnot cycle there are two isothermal processes
and two adiabatic processes. . In textbooks the cycle i
usually shown graphically with co-ordinates p and v. This
has certain advantages. However it seems interesting to
take T and v as the variables. In the usual graph, the
curves for the two types of process do not look vary
different. If we take T as one of the variables, it
immediately becomes obvious which processes are isothermal,
for in them T is constant and the graph is a level straight
line. The equation for an adiabatic process was given in

euation (3) as pVg = constant. As pV=RT, p=RT/V and the

equation becomes 'I‘Vg_1 = constant. As g=(C+R)/C, g-1=R/C.
Thus we have TVR/C = constant, and so
InT + (R/C)1lnV = constant.

Accordingly if we take x =1lnV and y=1nT, adiabatic changes
will be shown by a descending straight line with gradient
-R/C.

The nature of the cycle can be read off from the
diagram, Figure 1.

Figure 1. L Yoo B

If we begin the cycle with the isothermal change, at
temperature T,, from A to B, the lines AC and BD represent
adiabatics through A and B respectively. C and D are
points on these at temperature T2. -In the cycle we go from
A to B and then B to D; in both 6f these the volume
increases. We then go from D to C and from C to A; in both
of these the volume decreases.

We now consider the total work done and the heat
changes in the cyvcle.

As we saw in equation (5), the work done in BD is
C(T ~-T,), as we go from temperature T1 to T,. In CA we do
exact%y the opposite; we go from T2 to T1, so the
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walls are perfectly reflecting or not, since the radiation
is in equilibrium with the material of the container. It
does not matter whether the radiation is reflected or
whether some of it is absorbed, raising the temperature of
the container, and later radiated. He shows that: the '
conservation of energy would be v1olated 1f thls were not’
so (p.200).

Black Body. : ' - ' " ‘ )
Above we referred to a black body as one that absorbed _
all radiation falling onto it. There is no natural object
that has this property. However, if a cavity in a body -has- -
a very small opening, so that light entering through this
opening is reflected and partially absorbed many times in -
the interior, very little light eventually finds its way
out through the opening, and this is- found to give an
effectively black body. = This arrangement can also be
used in the opposite direction, the materlal belng heated
and radiation allowed to pass out through the  narrow
opening. This has certain theoretical advantages which will
not be discussed here. Such a source of radiation is used
in the first and third stages of the cycle described in the
next section, which follows the argument as presented by N
Richtmeier in hls "Introductlon to Modern Phy51cs

The Stefan-Boltzmann Law. '

In 1879 Stefan suggested, on the basis of experlmental
observations, a law equivalent to saying that wu, the
intensity of radiation inside a container,; is proportional
to the 4th power of the temperature. In 1884, Boltzmann-
showed that thlS result could be deduced- by con81der1ng an

"ether engine" on the analogy of the Carnot cycle. : ,

As in the Carnot cycle, there are two stages in which
the temperature is held constant and two in Whlch heat is
not allowed to enter or leave.

The constant temperature- stages differ markedly from
those in the Carnot cycle, for it can be shown that u, the ‘
radiation dengity, is a function of_temperatﬁre T alone. As
the pressure is u/3, it follows that pressure is constaht_
in an isothermal change, so such changes appear as -
horizontal lines on a p,V diagram.’ :

P . : E
A ' B
\ \
D .

.'_"V:

The contalner of the radlatlon is a cyllnder, 1n51de Whlch'

a piston can move. The piston has unit area.’ : '
Stage 1. We start at A, with temperature T,

pressure p, and volume V,. A black body is held at

temperaturé T, and radlatlon coming out of its small

opening passes into a small opening in the cylinder. The -
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Equating the two expressions for the éffiaiency we find

ar/T = du/(4) . ..
Integrating this gives 4 1n(T) = ln(u) + constant, so

u = aT4_ _ ' (195

Note. The fact that du and AT have been chosen to .

respresent decreases does not .invalidate the argument. If-

-you have any doubts on this score, it is quite.simple to

carry through the argument with du,dp and dT.regarded as

increases with negative values.

Question 1. We have seen that isothermal curves have the

equation p = constant on the p,V diagram. What equatlon do

adiabatics satisfy?

Question 2. Verify that the approx1matlon treating ABCD as .

a parallelogram doe's not lead to an error, . s

Planck's Version.

It is instructive.to.compare and contrast the proof of -
this result given in Planck's book, pp. 200-201. He
imagines a black body with variable volume, capable of
doing work. This might be a cylinder with a piston. There
is a small aperture at the end remote from the piston,
through which radiation is emitted, so the cyllnder
constitutes a black body. .Let U represent the energy of
the radiation inside the cylinder, so that U replaces E in
the universal equation (16). We have i ‘

av = 738 - pav. (20)

U=uV. BAll the quantltles U,p,vV,S,T are functions of state,
so black body radiation has a deflnlte temperature, namely
the temperature of the enclosing wall. We wish to work with
T and V as our .variables. Now. u is a function of T alone, . ..
SO we may write - o T P " ~
dU = d(Vu) = Vdu+udv = vV(du/dT)dT + udv. ‘
Now, from equation 20, TdS = QU + pdV = U + (1/3}udv.
since p=u/3. Hence we have '
TdS = V(du/dT)AT +(4/3)udv. Dividing by T,we
obtain ' ‘ ' o '
(¢S) _ V du and {9S) 4u

T)y T dT ‘ ( V)T= 3T

Applying é/éx o the first expression gives the same result
as applying d/0T to.the second, provided certain contlnulty

conditions are satisfied. We find
1du _ 4 du 4 u,
TdTr ~ 3T dT 3T

On simplifying, this givea 4&£7T =ldu/u‘and integrating

leads to u=aT4 as before.
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Tenets of a naturalistic mathematics

I shall now simply state the conclusions of my long inquiry into the
possibility of approaching mathematics naturalistically. It sounds dreadfully
pompous to say this, but since I have spent the better part of forty years
reaching these conclusions, and have anyway already published many
fragments of my thinking (which have puzzled and dismayed some
readers), it would be foolish of me not to publish the overall result: the key
which may enable those same bemused readers to see how it all makes
sense.

The first tenet is important, because it may serve to curb any tendency
to the kind of triumphalism which affected foundationalism, and led to its
collapse, in the 1960s. We begin with. the truism that mathematics Is
valued in society because of its predictive powers.: .'This is reflected within
mathematics by the relative importance of thie idea of a sequence, and
especially of the idea of a sequence which continues indefinitely in
accordance with some rule. But there is a limit to the 'finding of rules' for
sequences which continue indefinitely, because we can conceptualise a
'perverse random' sequence which will defeat any rule we try to use to

predict it beforehand. Thus:

TENET 1 Indefinabie sequences of events can be clearly and distinctly
visualised, and they can, a fortiori, occur in experience. Such sequences lic
outside the proper area of mathematics. Mathematics is fundamentally
concerned with well-defined patterns, structures and objects. But
indefinable sequences defeat every attempt at definition, indefinitely. They
can never be incorporated into mathematics for this reason. Consequently
there is a limit, which we can clearly and distinctly v1suahse to the
applicability of mathematics.

The second tenet is concerned with the possibility of applying
mathematics to itself. This possibility, of applying mathematics to itself, is
the great advance of Twentieth Century mathematics. It is used in the
century's most significant result, Godel's Theorem; it was used by Turing
in his conceptuahsatlon of a Universal Machine; and it was celebrated by
Hofstadter in his book Godel, Escher, Bach. (1979). But here, too, for all
the new power opened-up by self-application, we eventually run into a
limit. When one tries to formulate a statement which will assert its own
falsity, one ends-up with a paradox. This is caused by thie fact that one's
provisional assessment of the statement's truth oscillates between 'true' and
'false’.

TENET 2 Once we legitimise the application of mathematics to itself, we
open-up the possibility of oscillations of inconsistent partial meaning. This
is a new, fundamental, species of contradiction, which may be called
'dynamic contradiction'. The paradoxes of set theory exhibit dynamic
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