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NOTES ON A BRIDGE FROM CLASSICAL TO MODERN ANALYSIS.

Fréhhet has pointed out that it ic impossible to define
a metrio appropriate to the funetion space in which fn69 £
vhen f_(x) ~9 £(x) for each x. The reason is that
in any'metric space "the limit of a limit is & 1imit", that
gy, if @, 48; o B3 jpacos are 1imit points of a set 3

and 8, @&, then a is & limit point of S, But Baire

showed that this does not hold for functions with limit
defined as sbove. Let S be the set of continuous funetions,
Punictions in Baire Ciass 1 are limits of eontinuous functions.
Functions in Baire Class 2 are limits of functions &n
Baire Class 1 but are not limi¢s of any sequence of
continuocus funotions.

For exemple let £ _{(x} be 1 when 2¥x iz an integer,
0 otherwise, It is possible to find s sequence of
continuous functions tending to ff o Let f£(x) be 1
when x,multiplied by any positive ' integral power of 2,
givens an integer, 0 otherwise, Then :nﬂﬁﬁ f but
{az will be proved below) no sequence of continuous
funeticne tends to £, '

The idea of Baire category, of a "sparze set®, appears
for the first time in Baire®s demonstration of thigresult.

The idea of category generalizes without any difficulty at
all, from the real line to any metric spsee, and plays an
important role in metric sprce theory.

The present notes give an socount of Baive's proof, and
may serve the following purposesf(l) to show whence the concept
of Brire category came, (2) to explain Fréechet®s remerk that
there are topologicsl spaces (i.e. spacez where limit is
defined} for which no metric can be found, (3) to show &
way of approaching and visualizing proofs in snalysie
that may sometimes be found useful,

Since Balire was working on the clasaification of
discontinuous functions, we Degin by recalling some terminology
related to discontinuities,
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Congider 2 partifular example of f:é7,/,
a disocontinuous funetion, §f , .
vhere f{g) = 2? for rationel g N !
and =a® for irrational g. The ~ ‘
graph, &g shown here consists of -~ -
2 dotted parabolas. Considar the i g
values of 7{x) when ¥ ia in an g ~
interval [a<b, &+b] end b is # ™M
smalli, VWhether a le rationsl or / F
irrational, the upper bound will be s i
{a+b)? and the lower bound =(a+b}?,
Af 8 and b are positive. Aa b =% O, the bounds tend to a® snd
=a? 3 for any function,the corresponding 1limits are dencted by

\
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M(a) and m{a)., The difference, wi{a) = ¥M{a)} = m(a); whish in
our exsmple 18 2a?, may be called the jump at g.

If a is rational, the corresponding point on %the grsph is
on the upper parabola. If we take valuesz of x near to &, we
mey find f£(x) much leses than  f(a), because we have gone to
the lower parabola, but it is impossible for f{x) tc be much
larger than f{a). Here f is called upper semi-gontinuous
and f{a) = M(a). A

In the same way, if g2 is frrational, it iz impossible for
a snall variation to produce a large decrease in the value of
the funetion. In this case f{a) = m{a) and the funetion is

lower semi-gontinuous at this point.
At the origin, f{a) = M a) = m(a) and the Jjump w(a)=0,

Here the two halves of econtinuity have got together to
produce sontinuity,

Fréchet has pointed out, in lLes Espaces Abstraits, that
the length of a eurve provides & =imple and neturzl example
of semi=gontinuity. In Figure 2,
graph A is a smooth esurve, which
we pay think of as a thread; In
order to make sure that the surve
ig oniy altered "a 1ittle” we
enciose the thread in s narrow
tube, By wrinkling the thread
I can obtain & much longer surve,
X, without going outside the
tube, but by tightening the thread
I can only make the length inside the tube 2 little shorter,
So the funection ourve =» length is lower semi-continmuous,
tut not continuouns.

I tilyd sgeiy y

At a point x £ is eontinuous, w(x) = 0, Pointe
of discontinuity have w{x) » 0; Beire first uses the
concept of sparse set ("set of first category®) in
discussing the discontinuities of a funetion. We will not
go into the details of this theorem, but will merely indleante
how the concept of sparse set enters the argument. As just
mentioned, at a point of discontinuity, w{x)>0. Ve may use
3, to deseribe the set of pointes where wi{x)>l, Sa for the
set whers w(x) > 1/Z and generelly 8, for the zet of
points with wi{x) > 1/n . Each set includes the eariier
ones but that 12 net partioularly relevant. The set of all
discontinuities is U 8, , the union of al)l these sets as
n runs through the natural numbers. in sertain circumstances
eanch of the sets 8, is novwhere dense. u s, is thuz the union
of }{g nowvhere dense sets § we condense this by saying
thaet U 8, iz 2 aparse set, Baire proves that no sparse set
ean contain all the points in an interval of the real line,

The proof is very easy. 9. iz nowhere denge, This

means that in any interval I, we can find a closed intervel I,
frea from points of 81 .
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We now operate in I, instead of I, j; the effect is
that we have got rid of 8, and it has net sost use
anything, for in this wnrk one interval is as good as
another. No doubt I; iz shorter than I but none of
the properties we are dealing with O im altered
by a change of seala. So we continue § within I, we
find an interval I, free from points of 3, » and 30 on.

The nested closed intervals IpeX, coo OFe bound
to have at leazt one common poin%, whfch will be in nome
of the gets 3,, hence net in U 8, So U S, doea not

contain all the points of I, . n’ QoEeDo

This proof appearz to show that theri is one
point not in U Sp » but in fact there will be very many.
For instance, we cculd equally well carry out
the above construction within any subeinterval of I
and find @ point in it not in US, .

The concept of sparse set will be seen in action
in the proof below of the maln theorem. This theorem
dependz on the concept of fotal discontinuity. A function
f is oalled totally discontinuous if there is an interval
b _every point of which the jump w{x)>K, where of course

There are other, equivalent definitions,)
The function graphed in Figure. 1 for example ig totally
discontinuous, Sc iz the function f mentioned in the
sacond paragraph of page 1 above. 30 iz the well known
funetion with value 1 for x rational, 0 for x
irrational. '

Baire proved that, if £, o, 9ra coco 18 @&

sequence of continuousz functions, and ¥ a bBoeunded function
such that rn(z) =3 f{x) for each x in some interval,

then f cannot he totally discontinuous.

Eairo starts hiz procf with a lemma, which may serve
to 11lustrdte the genersl principle that proofs in
analyeiz usually look ruch harder than they are. When
you glance at the procf of this lemma, you sos 9
ineguations., Your mind is perhaps already tired
with what you have rend; and the lemma may loom in
your way &s a substantial obatacle: 1In fact, once
you have seen what the lemma means, its proof becomes
aimost & single mental sct, The lemma agsumesz that
thers 1z sonme 2et S of real numbers; for whish
sup S = Inf 2 > 2k, It states that if & 12 any real
nunber whatever, there 2xists z member of S whose
distence from g eXceeds k o
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Figure % ghows the situstion.

The only information we have ﬂmmw.su%ng
abovt the =et relates to sup § Ft'?.g. ——

and inf S. TFor all we ¥mowg.the -7 4%
set may consgist of only 2 numbers, :
onne 2t sup S and one et inf 3, If

sup 8 is not in S, there wmust be Q""" - T AN
members of the set Just below i, f%
If we mazk on our figure & narrow _
interval, with its eeiling at sup 9, T

we can be sure this intervel is amem (nf S

inhabited by elements of S. In the

same way we ¢an mark an inhebited

interval riging from inf 8. The fact thet both intervals
are inhabited is all the information at our dispssal,

The assertion in the lemme is now obviocus. In the figure,
i g ie below Q; its distence from am inhabitant of the
upper interval must exceed ¥ 3 4f 1¢ iz st or obove R,
its distance from the lower intexrval exceeds X .

Clearly, Baive did not regard this lemma ag expressing
any greet or surprising truth. It was just 2 detail he
wanted out of the way, 80 the reader would not be
dlstracted by it in the middle of the mein proof.
Personaily, heving seen what thies lemms smounted to,

T wouid not even btother t¢ check Reire’s 9 inequalities.
These caunot amount to anything more then putting into
formal shape the visual srgument Just ountlined,

Eroof of the Vain Theorem.

If you meke o few attewpts to corstruct
& sgquence of continuous furchions with the function
grughed in Fizucre 1 a5 a limit, you will not find it hord
to believe thet this task is in fact inpossible, as the
tneoren implics, The functions are rzouired to leap sbout
in & viry violent wzy. Baire's proof =zets out to
establish a contrzdiction between the following ststements ; -
1.) £ is bounded and Totslly discontinuous.
2.) sach fﬂ is continuous.

30) £,(x) =3 £(x) for each x in I.

The break evenbtually comes in stotement (3). Baire
finis sn x for shich ifn(x) is not a Ceuchy sesquence,
8¢ 1t does not converse at” all, and hence csnnot tend to
£(x).

Accordinsly our concern is with the tall of the
segusnce fp?fp+1’fp+2"°‘° de allow an opponent

to sclect the number p.
As f is totally discorntinuous, in sowe interval I
at every point w(x) » X.
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For convenicence of illustration, we choose s
particuler X, ssy K = 14. This mears that.in any
vertical strip,however thin,
we can find points in the . 4h
graph of £ vith vertical F:tg .
separation exceeding 14.

Wwithin I we let the
opronent choose eny interval

Io and &ny a, in IOa By

the leuma, we car find 89
as neer as we like to a_ , if
with gf(al)-f(ao)'>-?o :73
{(See Figure 4.)

In drasinz diagraus to
illustrote asrsguments in
analysis, we must ulways
loz3 the dice aszeinst
ourselves. The figure wust
show the situution least fevourable to our argumert.
For instence, in lizure 4, we want the difference »etwesn
f(al) and f(ao) to be more thasn 7. Accordingly f(aﬁ)

is shown half-way up the rezgion occupied by the grayh,
for this is the place it is hardest to be remote from.
e do not proceed imumediately to salect aq- 42

first look zt the functions fn assunzed to terd to f.
As fn(ao) ——p f(ao) we can find § > p 80 that
l£y(ay) ~ £(a )} < 1.
As fN is continuous, we can guoose &n interval (1 s
within I , throushout which  ffi(x) - £e(a )} < 1.

(See ¥izure 5,)
F"‘f 5
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!f(al) - f(ao)! > 7 . Then we have two steps siwilar

to those done & little earlier. e choose M p
so thst [fm(al)—f(al)[<:1, As P, is continuous, there

is ar intervel I, ‘throushout which !fﬁ(x)~f“(al)§4( 1.
(See the lowsr part of Fizure 5.)
It is evident that, in Ios gfufx) - fm(x)' 2 3.

It is now thst we choose a3 » inside I11 a0 thet

Towy if {ﬁr iw ¢ convirzent sequende, the differerces
bet jeer the terus should becowe indefinitely srall, so
certainly less then 3. e shall say ths sezaucrce h.s
"settled down after p terms" i ii%p, N»p imrliszs

17,3 ~ Tyl 3-
dur rura cbove shovs thet in any interval IO chogen
by the opronent wo can find «n intorvel IP in which the
seguance {fn(x)} hes not settled down bv the pbh  term.
It S, denotes the set of x for which {}p{x)} hes

settled down «fter p terms, this means that the sst S
is rowhnere donse, £
If % is not ir the set S_, it does rnot follow thet

the saguance frn(x)} diverzes, It s6ill hee tive for

g deathboed rerentence § it nay settle down for some nurber
laryer thzn p. But to converge, it must settle down
at sowe staze. Now the cholce of p was left to the
opponent. 2 have shom thet for esch p, S, is novhere
dense. If the sequwnce converzes, it must P settlsz down
for souwe vilue of p : that is, x must lie in U S_ .
But U S_ is & spuese set, uni cennot f£ill the P
intervel 1. S E >
At any roirt rot in the sparse set, the sequence
f,(x)  fails to corverse, i¢nd we have 2 cortradiction.

Note. It cut nov bz seern 7Tay Fisurs 5 wes drswn 29 it vss.
We wree tryirs to esteblish thet fM(x) ard £, (x) are far
apurt. 41l the inequalities spe therefor& drem

in such a way tnet f,, and f are made to approsch wech
otner as wuch &s s pessible - the czse most
unfevoursble Lo our wrsument.



