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HIS book tries to show why nearly

all mathematicians and scientists

find their work beautiful. They see
patterns in nature and in number. In
this book, students will have an op-
portunity to discover some of these
patterns for themselves.

No previous knowledge of science
or mathematics is required, as this
book can be read by anyone who
knows the basic facts of arithmetic.
A student can use it for individual
study. It can, of course, be used for
class study.

Answers to most of the questions
are given on page 31. The student
should check his own answers with
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INTRODUCTION

those on that page, and he should do
this immediately after deciding upon
his own result. He will in" this way
discover at once if he has under-
stood what the author has been try-
ing to communicate.

Most students will find that they
can think their way successfully
through this book. The work, how-
ever, is not spoon-feeding, and the
student is given every opportunity to
use his own judgment—to collect evi-
dence, to make guesses, to observe, to

invent.

In some cases a scientific result
may be given without going into de-
tail about its background. For ex-
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ample, we shall learn that a stone
falls#64 feet in 2 seconds. We shall
have to accept for the moment the
fact that competent scientists have
agreed upon this, even though we
cannot prove the statement without
complicated apparatus. It is not un-
scientific to accept the results of
other people’s experiments,

But such quoting of evidence lies
on the fringes of this book. Its main
purpose is to assemble material in
which the student can see clearly
what is happening and from which
he can draw his own conclusions.

This is something which, as a rule,

~ students enjoy doing.
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that students should become aware of the relationship be-
tween science and mathematics long before they reach the
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Here is a pattern:

RECOGNIZING PATTERNS

A pattern is often interesting to look at. Also, it tells you something. This pattern leaves off before it reaches the edge of the page. But

you can guess how it would go on to fill the line on the page.

Patterns To Complete

1. A man is digging and he discovers an ancient pavement. He can see only
the part in the middle, because soil covers the rest of it. However, by looking
at the pattern in the part that he sees, he can guess what the rest will look like.
Shade in what you think he will find under the soil.

In each pattern below, the right hand part is incomplete. Draw in each what
you think should be there.
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PATTERNS IN NATURE

Patterns are of real value in science, and indeed in all
of life. Science comes from the Latin word for “knowl-
edge.” Whenever we know that something will happen
in the future —perhaps it would be better to say when-
ever we expect something to happen in the future—it is
because we have seen a pattern in past events.

There is the pattern of the seasons—winter, spring,
summer, autumn, There is the pattern of human life—
birth, childhood, youth, parenthodd, old age, death. We
should be very surprised if a baby grew into an old man
and then became a boy.

There is a certain order of events that we are used to,
and we expect this order to continue.

Patterns do not always exist without change. In some
exceptional years people say, “Really we had no spring
at all this year.” Many forces act to give us our weather,
and it is particularly difficult to find a pattern for fore-
casting the weather.

In the same way, it is usually impossible to find a pat-
tern in the way a feather, a leaf, or a light piece of paper
falls. The air acts on a falling leaf and causes it to per-
form a beautiful but complicated dance. No pattern can
be seen. If, however, we drop a stone, its motion is much
simpler and we can detect a simple pattern in it.

To discover this pattern, imagine a stone falling in

utter darkness. And imagine that we have a machine"

that will flash a light every quarter-second. Each time
the light flashes, we can see where the stone is and we
can take a picture of it. We should obtain a result some-
thing like the diagram below.

«——— Stone starts here
+—— Next seen here

o ——
(@]
[ § ] «——— Then seen here

‘__Then seen here

D: +———Then seen here

Can you mark the
next two places
where the stone
should be seen?

PATTERNS IN NUMBERS

There are several different ways of answering the
question about the falling stone, but, however you do it,
you need to count the squares through which the stone
has fallen. So you are looking for a pattern in numbers.

Numbers come into most branches of science and en-
gineering. How fast is the earth traveling? How far is it
from the earth to the moon? How thick is a bar of steel?
What weight can it safely support? What is the propor-
tion of salt in sea water? To what temperature must
water be raised to kill the germs in it?

All these guestions, and many others, have something
to do with numbers. To discover the laws of science, you
need to be good at spotting patterns in numbers, and
much of this booklet will deal with how to do that.

You may not have realized how much patterns come
into afithmetic. The exercises below show that there
are patterns even in the multiplication tables.

0 1 2 3 4 5 6 7 8 [:]
10 11 12 13 14 15 16 1719

20 21 22 23 24 25 26 28 29
30 31 32 33 34 35 36 37 38 39
40 41 42 43 44 45 46 47 48 49
50 51 52 53 54 55 56 57 58 59
60 61 62 63 64 65 66 67 68 69
70 71 72 73 74 75 76 77 78 79
80 81 8 83 84 85 86 87 88 89
90 91 92 93 94 95 96 97 98 99

100 101 102 103 104 105 106 107 'IOé 109

Squares have been drawn around 9, 18, 27, because
these numbers are in the 9-times table. Mark in the
same way all the numbers of the 9-times table; that is,
all the numbers that are exactly divisible by 9.

o 1 2 3 4 5 6 7 8 9
10 11 12 13 14 15 16 17 18 19
20 21 22 23 24 25 26 27 28 29k
30 31 32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47 A8 49

Mark all the numbers that are exactly divisible by 2; that is
the even numbers. .



(0} 1 2 3 4 5 6 7 8 9 0 1 2 3 4 ‘ 5 6 7 8 9
10 11 12 13 14 15 16 17 18 19 10 11 12 13 14 15 16 17 18 19
20 21 22 23 24 25 26 27 28 29 20 21 22 23 24 25 26 27 28 29
30 31 32 33 34 35 36 37 38 39 30 31 32 33 34 35 36 37 38 39
40 41 42 43 44 45 46 47 48 49 40 41 42 43 44 45 46 47 48 49
50 51 52 53 54 55 56 57 58 59 50 51 52 53 54 55 56 57 58 59
60 61 62 63 64 65 66 67 68 69 60 61 62 63 64 65 66 67 68 69
Mark all the numbers that are in the 3-times table. Mark all the numbers that are in the 4-times table.

(Do not stop at ‘‘three tens or three twelves.” As 69 = 3 X 23,
69 counts as being in the 3-times table. ’

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9
10 11 12 13 14 15 16 17 18 19 10’ 11 12 13 14 15 16 17 18 19
20 21 22 23 24 25 26 27 28 29 20 21 22 23 24 25 26 27 28 29
30 31 32 33 34 35 36 37 38 39 30 31 32 33 34 35 36 37 38 39
40 41 42 43 44 45 46 47 48 49 40 41 42 43 44 45 46 47 48 49
50 51 52 53 54 55 56 57 58 59 50 51 52 53 54 55 56 57 58 59
60 61 62 63 64 65 66 67 68 69 60 61 62 63 64 65 66 67 68 69
70 71 72 73 74 75 76 77 78 79 70 71 72 73 74 75 76 77 78 79
80 81 82 83 84 85 86 87 88 89( 80 81 82 83 84 85 86 87 88 89
90 91 92 93 94 95 96 97 98 99 90 91 92 93 94 95 96 97 98 99
Mark all the numbers that are in the 6-times table. Mark all the numbers that are in the 7-times table,

0 1 2 3 4 5 6 7 8 9 o 1 2 3 4 5 6 7 8 9
10 11 12 lé 14 15 16 17 18 19 10 11 12 13 14 15 16 17 18 .19
20 21 22 23 24 25 26 27 28 29 20 21 22 23 24 25 26 27 28 29
30 31 32 33 34 35 36 37 38 39 30 31 32 33 34 35 36 37 38 39

‘ 40 41 42 43 44 45 46 47 48 49 40 41 42 43 44 45 46 47 48 49

50 51 52 53 54 55 56 57 58 59 50 51 52 53 54 55 56 57 58 59
60 61 62 63 64 65 66 67 68 69 60 61 62 63 64 65 66 67 68 69
70 71 72 73 74 75 76 77 78 79 70 71 72 73 74 75 76 77 78 79
80 81 82 83 84 85 86 87 88 89 80 81 82 83 84 85 86 87 88 89
90 91 92 93 94 95 96 97 98 99 90 91 92 93 94 95 9 97 98 99

Mark all the numbers that are in the 8-times fable.

Mark all the numbers that are in the 10-times table.




Something To Make

You may like to make “frames” for
the multiplication tables.

Write the numbers 0 through 99 on
graph paper, as in diagram A to the
right. We call this the “number
sheet.”

Then take another piece of graph
paper of exactly the same size. In this
sheet, cut away some of the squares
to leave holes. Suppose, as an ex-
ample, you cut out squares as indi-
cated on diagram B on this page. We
call the paper with the holes cut in it
a “frame.”

Now put the frame over the num-
ber sheet. You will see something
like diagram C.

The numbers which show through
are numbers of a certain multiplica-
tion table. (Which one?)

In the same way, you can make a
frame that allows the numbers of the
4-times table to show through. You
can make another for the 6-times
table. In fact you can make one for
each multiplication table.

A Suggestion

In making the frames, you have to
be careful with tables like 2-times,
3-times, and 9-times. Each of these
frames is in danger of breaking into
several pieces.

You may prevent this by leaving

A Guessing Game

This is an interesting game. It is
fun and it is useful, for it trains you
to make mathematical and scientific
discoveries.

One student stands up. One at a
time, the other students call out num-
bers. The student who is standing an-
swers with numbers; but he must
first decide what rule he will use. He
decides the number he will call by
doing the same thing to each number
given by a member of the class. He
‘may decide that he will add 2 to each
number, or that he will multiply each

6

bars between the squares to hold the
frame together. The number sheet
would have to look like D below.

The frame, with the numbers show-
ing through for part of the 2-times
frame, would look like E below.

Make the number sheet first, since
the same number sheet is used with
all the different frames. Then make
the frames so that the numbers you
want will show through. The black
parts of the number sheets will come
under the bars which hold the frame
together.

If you do not want to have bars,
as suggested above, you may be able
to find some other way of holding the
frames together. For instance, you
might begin with a sheet of trans-
parent paper or cellophane, and glue
pieces of paper to it so as to cover
the numbers you want to hide.

You can make many experiments
with these frames. You can look at
a frame and try to guess which table
it shows before you put it on the
number sheet. You can find out what
happens if you put two frames over
the number sheet at the same time.
Do you expect to see any numbers at
all if you put the 2-times and the 3-
times frames on? If so, which num-
bers would show? What do you see
if you put the 6-times and the 8-times
frames on together?

by 3. That is what we mean by de-
ciding the rule he is to use.

The rest of the class is to guess from
his answers what rule he is using. For
example:

1. Henry stands up. He thinks,
“Whatever number they say, I will
answer one more.” Someone calls out
8, and Henry answers 9. Someone
calls 3, and Henry answers 4.

Now Jane thinks that she has
guessed what Henry is doing. She
does not blurt out the rule, but when
someone says the next number, per-
haps 15, Jane says, “Henry I think

A
0 1 2 3 4 5 6 7 8 9

10 11 12 13 14 15 16 17 18 19
20 21 22 23 24 25 26 27 28 29
30 31 32 33 34 35 36 37 38 39
40 41 42 43 44 45 46 47 48 49
50 51 52 53 54 55 56 57 58 59
60 61 62 63 64 65 66 67 68 69
70 7172 73 74 75 76 77 78 79
80 81 82 83 84 85 86 87 88 89

90 91 92 93 94 95 96 97 98 99
B

14
21 28
35
42 49
56
63
70 77

84

91 98

you are going to answer 16.” When
enough students have guessed what
Henry is doing, someone tells the
actual rule and Henry sits down.

2. Ann stands up. She decides that,
whatever number is said, she will
double it.

Bill: 7.

Ann: 14,

Sue: 3.

Jack: I think you are going to say

10. Jack thinks Ann is adding 7 to
each number called.



Ann: No, I am going to answer 6.
Fred: 1.

Joe: I think you are going to an-
swer 2.

Ann: You are right.

3. Joe stands up. We have to guess
what he is doing.

Susie says 5.
Joe answers 995.
Jack says 7.

Jane: I think you are going to say
997.

Joe: No.Isay 993.

Ann: 123.

Joe: 877.

Susie: 911.

Joe: 89.

Alf: A million.

Joe: Say something smaller.

Alf: All right. 10,000.

Joe: Still too big.

Alf; Well, 1,000 then.

Joe: Zero.

Jane: 999.

Joe: 1.

Jane: 998.

Joe: 2.

Fred: 600. )
Jane: I think Joe will answer 400.
Joe: That’s right.

What was Joe doing? What rule

was he using?

4. Jane stands up. It will save space
if we show in two columns the num-
bers the class calls out, and the an-
swers Jane gives.

Someone calls: Jane answers:

10 5
42 21
13 6%
9 4%
2% 1%
6 3
4
100 50
20
4
LI

Can you fill in the three missing
answers? What rule was Jane using?
Choose one of these sentences and
complete it. Jane is:

Adding . to each number.
Subtracting . . from each num-
ber.

Multiplying each number by ... .

Dividing each number by

J.Sue stands.

Someone calls: Sue answers:

7 9
10 12
1 3
4 6
3 2%

11 13

Sue’sruleis .

6. Someone calls: Fred answers:

10 7
19 16

5 2

9 6
100 97
82 79
11 8

Fred’s rule is

7. Someone calls: Bill answers;

1 9

9 -1

7 3

5 5

2 8

6 4
12 Too big
1 Too big

8 2

Bill’s rule is

8. Someone calls: Cathy answers:

6 18
10 30
5 15
100 300
21 63
2 6
3 9
4 12
17 51

9. Someone calls: Jack answers:

18 4%
8 2
100 25
101 253
12 3
1 3
40 10
44 1
36 9

Jack’s rule is

10. Someone calls: Nancy answers:

2 4

5 25

3 9

1 1

4 16
10 100
100 10,000
. 6 36
% x

7 49
1,000 1,000,000

Nancy’s rule is different from all
the rules we have had so far. Can you
find out what she is doing?

If someone Nancy will
calls out answer
&
.
12

11

Nancy’s rule is




PATTERNS IN ARITHMETIC

We are now going to hunt for patterns in arithmetic.

To get started, we will do together one question which
we shall call QUESTION Al. Work out 0X 0, 1 X1,
2 X 2,3 X 3,4 X4, and so on. What do you notice about
the answers?

Al
The answers are:
0X0= 0
I1X1= 1
2X 2= 4
IX3= 9
4X 4=16
5X 5=25
66X 6=236

Of course, we could go on with this as long as we
liked. Our question is, “What do you notice about the
answers?”’

Perhaps we notice several things. Someone might see
that 0 is even, 1 is odd, 4 is even, 9 is odd, and so on. We
get even and odd numbers by turns. That is quite true.
But it is to be hoped that you would notice the way in
which these numbers rise, the change from each num-
ber to the next. )

From 0 to 1 is an increase of _____ 1
From 1 to 4 is an increase of . __. "3
From 4 to 9 is an increase of ______ 5
From 9 to 16 _. I
From 16 to 25 9
From 25 to 36 -~ 11

You will notice here that we have the odd numbers
1,3,5,7,9, 11, in order. (What would you expect the
next increase to be? Continue with 7 X 7 and see if you
are right.) You will notice that these odd numbers rise
each time by 2.

We might write the whole thing like this:

Quranswers 0 1 4 9 16 25 36
Rise by 1 3 5 7 9 11
Which rise by 2 2 2 2 2

Here are some more questions of the same kind for
you to work out.

A2

Our answers are

They rise by

. And these rise by

A3

Our answers are

They rise by
and these rise by I—lfl—_‘—[-‘_]f,—l
A4

(Fill in this last line so as to continue the pattern.)

Our answers are | | | | | | |

They rise by
and these rise by L“—l
i [T

0X 4=
1X5=

2xX 6=
IX7=

Our answers are
They rise by
and these rise by
A6

Make up some more questions of this kind for your-
self. What do you expect to notice about the answers?

LI T T T[]

SURPRISING ANSWERS

In the next lot of questions there will also be some-
thing new to notice about the answers.

Before we get on to that, we must make sure we un-
derstand the same thing by the question. For instance, if
I ask, “Whatis7—3 x 2?2 I expect 3 X 2is6and 7— 6
is 1. You might say, “But couldn’t it be 8? For 7T— 3 is 4
and 4 X 2 is 8.” Well, it all depends what the question is.
1 is the correct answer to “Multiply 3 by 2, and subtract

OB thow
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the answer from 7.” 8 is the correct answer to, “Sub-
tract 3 from 7 and then multiply by 2.”

Mathematicians have agreed among themselves, to
avoid this kind of misunderstanding, that in an expres-
sion like 7 — 3 X 2, the multiplication is to be carried out
before the subtraction. In the old arithmetic books this
used to be emphasized very strongly, but not all the new
books mention it.

In section B, all our questions have multiplication
signs and subtraction signs. The multiplications are to
be done before the subtractions. Thus, in question B1,
for example, 3 X 3 — 2 X 4 means 9 — 8, which is 1. You
may only subtract after you have done both the multipli-
cations. You will not get the little surprise if you read
the question some other way.

Bl
2X2—-1X3=__. .
IX3—2X4=____
4X4—-3X5=_______
5X5—4X6=____
6X6—5XT7 =

What do you guess 17 X 17 — 16 X 18 will be?
Work it out and see if it is. What do you think

13,589 x 13,589 — 13,588 X 13,590 will be?

What do you notice? _ ... .

Bz
2X3—1X4=____
3X4-2X5=_
4X5-3Xb=
5X6—4X7=_

What do you notice? ___

What do you guess 86 X 87 — 85 X 88is? ._..___ Guess
101 x 102 — 100 X 103 and check by working it out.

B3
2X4—1X5=
3IX5—2X6= .
4X6—3 X7 = ..
S5X7—_X_ .= _ .

66X .~ _ X =
X m X L

What do you notice?

Use the result to guess the answer to a question with

large numbers in it.

B4. Work out
IX6—1X 8= _ . .
4XT7—2%X 9=
SX8-3X10=

- and use this to make some guesses.

L o

B5. Work out

2X6—-3X4= .
3><7—4>'<5:‘,,,- ,,,,,,,,,,
4X8—-5X6=___________
S5X9—6X7=_____
AX X =
X =X o=

What do you notice about the answers? Is this ques-
tion like questions B1 through B4 or is something differ-

ent happening now?
B6. Work out
IX 8—4X6=______ .
4X 9—-5X7=___
5X10—-6X8=___..
6 X ]_] —7X9=_____

X e — X L=
B7.Work out
3IX4—1X5=___ .
A4X5—-2X6=___ . .
5X6—-—3X7=_ .
6X7—4X8=__
X =X =
X i X o= N
B8. Work out
1X3—-0Xx2=____ .
2X4—-1X3=___.__ __
3IX5—-2X4=__
4X6—-3X5=__________
X=X L=
X=X =

BI. Work out
1X1—-0X0=__________
2X2—1X1=____________
3IX3—2X2=

4 X 4—-3X 3=

X=X =

X — X _=

B10. Something happened in questions Bl through B4

‘that was different from what happened in questions B5

through B9. Make up for yourself many questions like
the ones above. Sort out those that behave like B1
through B4. Can you find any way of making up ques-
tions that will be sure to be like questions B1 through
B47 Can you find a way of getting questions that will be-
have like B5 through B7? Can you make up questions
that will behave like B8 and B9?

9



, TRICKS AND WHY THEY WORK

In Chapter 2 we had some questions with surprising
answers. In this chapter we look at another kind of sur-
prise—tricks with numbers. :

Probably you have often heard tricks like this one:

Think of a number.

Add three to it.

Double.

Take away four.

Halve.

Take away the number you first thought of.

Whatever number you think of at the start of the
trick, provided you make no mistakes, you will end up
with the answer 1.

Why does this work? We can see by thinking in pic-
tures. When you have thought of your numbers, sup-
pose you put that many stones in a bag. I can see the
bag, but I do not know how many stones are inside it.

When I say, “Add three,” you put three more stones
next to the bag. I can now see a bag and three stones.
I tell you, “Double.” You bring up exactly the same
things again. I now see two bags and six stones. “Take
away four.” You remove four stones. I see two bags
and two stones, “Halve.” You do so. I now see one bag

and one stone. “Take away the number you first thought

of.” The number you first thought of was the number of
stones in the bag. So you remove the bag. That leaves

just one stone. The final answer of this trick is always 1.

—regardless of the number you may have chosen.
In C1 through C4 below, some are tricks and some are

Think of a number 8
> X
dd 3 00O

Double 8 coo
g 000

Take away 4 8 1%
3o

Halve 8 o

Take away the

number you first

thought of ©

10

you first thought of

not. In the tricks you can tell a person the answer, be-
cause whatever number he thinks of, he will always get
the same answer. In the others, this does not happen.

Can you find out, by drawing bags, which are the
tricks? It it -~ , to make mistakes, so test your an-
swers; think of numbers and see whether the same an-
swer always comes.

C1. Think of a number

Add 5

Multiply by 3

Subtract 9

Divideby 3

Take away the number
you first thought of

C2. Think of a number

Add3

Double

Subtract 2

Take away the number



. Double

Add 1

Double. :

Add 10

Divide by 4

_ you first thought of  ___

Take away the number
you first thought of

C4. Think of a number

Add3

_ (Continue in next column)

Add the number you first
thoughtof

Divide by 3

Take away the number

Making Up Your Own Tricks

You will see that there are very many tricks of this
kind. How would you make one up for yourself? Be-
fore you read further, you may like to see if you can
invent your own trick.

What makes a trick of this kind work?

« Suppose you say to a friend, “Think of a number. Add
2.” You certainly cannot tell him the answer. If he
thought of 5, his answer would be 7. If he thought of 10,
his answer would be 12, If he thought of 1,000,000, his
answer would be 1,000,002. You have no way of tell-
ing what his answer-is.

In pictures it would look like this:

Think of a number 8
g (e

Add 2

You do not know how many stones are in the bag.
That is why you cannot tell the answer. To make a trick,
you have to arrange things so that no bag is left at the
end.

Suppose you say, “Think of a number. Add two. Take
away the number you first thought of.” The first two
steps are shown in the picture above,

In the last step—“Take away the number you first
thought of” —you remove the bag. Two stones are left
and the answer is always 2. This is a trick, but a rather
feeble one. Many people would see right through it and
would not be surprised at all. To surprise your friend,
you have to make the trick a bit more complicated to
hide what you are really doing.

11
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Here is an example:

Think of a number g
Add 4 to it Zoooo
& o000
Double
g 0000
Take away 2 g o0
B ooo
Halve g 000

Take away the
number you first

thought of 000

The answer is 3. Here, as you see, no bag remains at the
end. The step before the end should leave just one bag.

When you say, “Take away the number you first thought

of,” that gets rid of this bag.

A Plan To Save Labor

You may get tired of drawing bags and stones, par-
ticularly if fairly large numbers appear in a trick. It is
easy to avoid most of this labor. Instead of drawing two

bags and six stones, you can write 2 b + 6.

It would be most wearisome to draw a hundred bags

and fifty stones. It is easy to write 100 6 + 50.

(Be careful not to let your bag look like the figure 8.)
In this shortened way, write:

Five bags and three stones ___:

Ten bags and one stone

Three bags and four stones

Three bags 3
Four stones ___ 4
Two bags

Five stones

Two bags and five stones

12

Finding Endings for Tricks

It does not matter how a trick begins, it can always be
finished successfully. Here is the beginning of a trick in °
words and pictures:

Think of a number 6
Add one 6 +1
Double 2 5 +2

Add one

2 & +3
1 8 +6

Double

How are we to finish this trick? We aim to get to a
statement that has but one bag, and then to take that
bag away. This is how all our earlier tricks ended.

At present we have four bags in the picture. If we di-
vide by 4, that would give one bag. But it is awkward
to divide 6 stones by 4. Before we divide, we might add
or subtract some number that would make the division
by 4 easy to carry out. '

There are many ways of finishing this trick. Here is
one of them:

We had reached 4 b + 6
Add 6 4 5 +12
Divide by 4 4 5 + 3

Take away the number
you first thought of 3

The answer is 3

It is wise to make sure that we have not made any
slips. Try thinking of different numbers and check to
see that the answer 3 does come whatever number you
choose.

Try It Yourself

Some beginnings of tricks are given below. F ind a
good ending for each of them. This booklet cannot give

.answers because there are many different ways in which

these tricks could end. If you get a trick that works,
your answer is right.

Endings wanted for these tricks!

D1. Think of a number
Add3

Double

Subtract 2




D2. Think of a number

AddSs

Double

Subtract 6

D3. Think of a number

Add1

14

Double e

Add 4

D4. Think of a number

Add1

Double

(Continue in next column)

Add1

Multiply by 3

Add 3

D5. Think of a number

Add1

Double

Add1

Double

Subtract §°

Double

13



From Pictures to Shorthand

‘We have been using the picture of a bag to help.us
imagine the number somebody thought of. Suppose we

erase the top and bottom of the bag. This will change

to A , which looks much like the letter X.
It is much quicker to write X than to draw a bag. In-
stead of 4 5 + 6, we now write 4X + 6.

This is a very convenient shorthand. We now have
four different ways of showing the same thing:

1. Words. Four times the number somebody thought of
with six added.

2. Picture. | 5 A 5 6 S

. Shortened Picture. 4 & +6

(%)

o

. Shorthand. 4X + 6

The shorthand form, Number 4 above, is very quick
and easy to write. It says just as much as all the words
in Number 1. A scientist will often use Number 4, hardly
ever Number 1. The pictures are useful to help you
imagine what is happening and to see why the trick
works. :

Some Shorthand Exercises

The illustration below shows the three ways we may
tell about the same trick.

WORDS PICTURES SHORTHAND
Think of

a number 8 X

Add 4 &S cooo X+4
Dovble R Rwse  2X+8
Subtract 2 58333 2X+6
Halve 5 000 X+3

Take away the
number you first ooo 3
thought of

Some exercises are given so that you may get used
to reading and writing in our shorthand. We take some
idea and express it in each of the forms which we shall

call #1, #2, #3, and #4. The first exercise has the an- ~

swers given. You should be able to fill the spaces in the
other exercises.
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I1. #1 Twice the number thought of

#2 .

#3

#4

2X

III. #1 Four times the number thought of

#2

added
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In Chapter 3 we talked about tricks that we can do
with numbers and bags of stones. By the end of that
chapter, you may have guessed where this was leading.
Most people know that X has something to do with al-
gebra. The purpose of Chapter 3 was to introduce you to
algebra.

In fact, the whole of Chapter 3 dealt with algebra. If
you answered the questions on page 10 by drawing bags
and stones, you were doing algebra.

We now want to answer the question, “How does al-
gebra help us to work with and understand science?”

This question will be answered in two parts. First, we
shall see how algebra is connected with the guessing
game described on pages 6 and 7 of this booklet. Then
we will show that science itself is a kind of guessing
game.

Do you remember how the guessing game was played
by your group? When Henry rose, he had decided that,
when someone said a number, he would answer with
one more than that number.

The game begins, “Say a number.” Qur tricks on page
10 began, “Think of a number.” Our bag and stone pic-

tures will do just as well for the game as for the x tricks.”

Instead of putting into the bag the number of stones you
have thought of, you put in the number you have said.

If we picture the number you say as “a bag,” we must
picture Henry’s answer as “a bag and a stone.”

Now we can translate this into shorthand. If you say
X, Henry answers X + 1.

Ann decided to double whatever number was called.

If you say a number, she answers twice your number.
If we picture your number as “a bag,” we must picture
her answer as “two bags.” In shorthand, if you say X,
Ann answers 2X.

Whatever number was said, Joe decided to subtract
that number from 1,000.

To the number 5, Joe answered 1,000 — 5

To the number 7, Joe answered 1,000 — 7

To the number 123, Joe answered 1,000 — 123

To the number 911, Joe answered 1,000 — 911

To X, Joe answered 1,000 — X

Jane’s rule can be described in two ways. Jane might
have thought, “Whatever number is said, I will answer
half that number.” Equally well, she might have thought,
“Whatever number is said, I will divide that number
by 2.7

If X is short for “the number someone has said,” X
can be written for “half that number.” For “that num-

ber divided by 2” we could write X + 2, or )_2(’ or X/2.

i I
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In shorthand, then, Jane’s rule may be written in any
of these ways:

If you say X, Jane answers 34X
If you say X, Jane answers X /2

X
If yousay X, Jane answers —

On page 7 of this booklet you answered some ques-
tions about the guessing game. We have already trans-
lated into algebra the rules used by the students in ques-
tions 1 through 4.

Translate into algebra your answers to questions 5

through 9. The answers can be found somewhere in the
following list:

b4 x+1 x4+ 2 x+3 x+ 4
o x—1 x—2 x—3 x—4 x—5
2x 3x 4x 9x 6x
T—x 8—x 9—x 10 — x 11 —x
X X X
2 3 4
orix or ix or ix

From this list, choose the correct answers for the spaces
below. Refer to questions 5 to 9 on page 7.

Question 5. If you say x, Sue answers

Question 6. If you say x, Fred answers

Question 7. If you say x, Bill answers

Question 8. If you say x, Cathy answers

Question 9. If you say x, Jack answers

Here is a question that goes the other way round. Mike
decides that, if you say x, he will say 10x + 3. If we pic-
ture your number as a bag, we must picture Mike’s an-
swer as ten bags and three stones,

You say Mike answers
r
2
3
4 43
5
6
7T
8

Do you notice anything about the numbers Mike an-
swers? What would be the simplest way for him to find
the number he ought to answer.

15



Guessing Machines

This is another form of the guessing game.

F1

Some numbers are marked on paper or cardboard, as
shown in the illustration above. A pointer, with x
marked at one end and y at the other, is pinned by a
thumbtack at the center so that it can turn freely.

You can think of this as a very simple calculating ma-
chine. The question is, “What does it calculate?”

In the machine shown here, when x points at 7, y
points at 8. When x points at 10, y points at 11. (The
numbers must be carefully arranged in a circle so that
the proper numbers are opposite each other.)

On this machine, whatever number x points at, y
points at a number that is one more than that. So this is
a machine for adding 1—not a very exciting machine!
The law it illustrates is y = x + 1, since the number y
points at is always found by adding 1 to the riumber x
points at.

Muaking Other Machines

On this and the following pages are 12 different ma-
chines. Cut out a pointer just long enough for use on
these machines. Mark x on one end of it and y on the
other. The same pointer can be used on each of the ma-
chines in turn.

Before you begin to study each question, fasten the
center of the pointer to the center of the machine by a
thumbtack. The end y should always point toward the

numbers at the top, the end x to the numbers at the bot-
tom.

Note the y number opposite each x number. Then,
in the space below, write the law belonging to each ma-
chine. Use the shorthand form. It is much easier to write
y = 3x than to write the whole sentence, “The number
y points at is 3 times the number x points at.” As soon as
you have done each question, check your answer with
the answers at the back of the book.
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Machine F2
For this machine
=X+ el

Machine F3
For this machine

Machine F4
For this machine
y=x— ...

Machine F5
For this machine
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Machine Fé
For this machine
Y = s X

Machine F7
For this machine

Machine F8
For this machine
y=2x+4+ ...

Machine F9
For this machine

F7

F8

F9

Machine F10
For this machine

Machine F11
For this machine

Machine F12
For this machine

Machine F13
For this machine
y =5x + 4.

Fill in numbers
on y side of the
machine.

F11

F12

F13
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Guessing and Science

A scientific experiment is much like the guessing
games and the guessing machines. In the games, you
can call out any number you like and you will receive
a definite answer. With the machines, you can choose
which number x is to point at; then y will point at a
definite number.

It is as if the machine had given you an answer. In an
experiment in science, we choose a number, and Nature
gives us an answer. Here are some examples:

1. How long does a stone take to fall to the ground
from any height?,We might drop a stone from a height
of 50 feet and see how many seconds it took to fall. We
might drop other stones from heights of 100 feet, 150
feet, 200 feet, and see how long each took to fall.

Then we would try to find some law for the results.
Here we have chosen the heights for our experiment,
but we have to get the answer in time from Nature.

2. Wha.t wezght ’UJ’Lu a 17
round steel bar support? o]
We might take a steel bar
0.1 inch thick and see what
weight hung on the end
would break it. Then we
might try steel bars 0.2
inch, 0.3 inch, and 0.4 inch
thick, and see what weight
was required to break
each.

thickness
s

steel bar

weight

We would hope to find some simple law behind these
results. Here we choose the thickness of the bar, and
the experiment replies with the weight that will break it.

We shali think more about this question when we read
page 19.

3. How far does a car go after the brakes are applied
before it stops? We might drive a car at 10 miles per
hour, put the brakes on when it crossed a certain line,
and see how far it went before coming to rest. We might
repeat the experiment with the car going at 20 miles
per hour, then at 30 miles per hour, then at 40 miles per
hour. We would look for a pattern or law in the results.

The results as given in the laws of one state are found on
the next page.

Here we choose the speed of the car, and that deter-
mines the braking distance. (The condition of the road
surface must be the same for each experiment, of
‘course. )

4. By what law does an animal grow? We might take
a baby mouse and weigh it when it was one day old,
when it was 2 days old, when it was 3 days old, and so on.

Living things are more complicated than machines,
and we would not expect to find a very simple law. Still,
we might make some discovery.

Here we choose the ages 1 day, 2 days, 3 days, etc,
The experiment of weighing the mouse gives an an
swer to go with each of these.
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A Shorthand for Science

Earlier we used x as short for “the number someone
thought of.” A student might say, “I do not like x be-
cause it does not help me to remember. I would rather

- use n, because that is the first letter of number, and it

helps me to remember that n stands for the number

~ thought of.

This student has every right to choose n rather than
x. It does not matter what letter you use, so long as you
know what it means.

In the guessing game, a student might use ¢ as short
for “the number someone calls out,” and a as short for
“the number given as an answer.” Henry’s rule could be
written o = ¢+ 1, because Henry answers one more
than the number called out.

In scientific work, this arrangement is very conven-
ient. In our experiment about the falling stones, we
could use x as short for the number of feet through
which the stone falls and y as short for the number of
seconds it takes to fall that distance.

There would be nothing wrong with doing this if you
wanted to. But most people seem to prefer the following
plan.

The stone is dropped from a certain height, so we use
h to stand for the number of feet in this height. It takes a
certain time to fall, so we use t for the number of sec-
onds it takes to fall.

We want to find a rule connecting h and t. This rule
will be discussed a little later.

Letters Stand for Numbers

Notice, by the way, that h and t in the falling stone ex-
periment are both numbers. Do not think of h as “the
height” and t as “the time.” We shall use h to mean “the
number of feet in the height” and t to mean the “num-
ber of seconds in the fall.” For example, a stone falls
from a height of 64 feet in a time of 2 seconds. We write
thish = 64, t = 2.

Engineers sometimes use a different kind of algebra
in which they write “h = 64 feet” and “t = 2 seconds,”
but it is not wise for one who is just beginning algebra
to use such a system. Both in higher mathematics and
in engineering there are places where letters stand for
things that are not numbers—but you can learn about
that when you reach that stage.

In this book, letters such as x, ¥, h, 1, will always stand
for numbers. '

In our second experiment above, we know how thick
a steel bar is, and we discover by trial what weight will
break it. Suppose we find that a weight of 1,000 pounds
will break a steel bar 0.1 inch thick. We might write
w = 1,000 because w reminds us of weight, or p = 1,000
because p is the number of pounds, or b = 1,000 because
it is something to do with breaking. It does not matter
which of these you use, provided you say what you are
doing.

Always begin your work by explaining the code you
are using. Anyone else who reads your work will then
be able to understand what you are doing. You yourself
may want to refer to it weeks or months later. You will
have forgotten what code you used, and will find your-
self asking, “What does w stand for? Did I use it be-
cause it reminded me of weight, or because it had some-
thing to do with the width of the bar?”
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In the same way, the numbers that measure the thick-
ness of the bar might be indicated by t, or by b for

breadth, or by d for distance or diameter,* or by i be-

cause it is measured in inches. You might prefer some
other letter. Whatever letter you choose, show clearly
what it means.

The records of this experiment might appear like this:

w = the number of pounds weight needed to break a
round steel bar.

d = the number of inches in the diameter of the bar.

d w

0.1 1,000
0.2 4,000
0.3 9,000
0.4 16,000
0.5 . 25,000
06
0.7

We have not yet learned how to write the rule con-
necting d and w in shorthand. This we shall study later.
But can you guess what numbers should go in the spaces
above?

Note: Experiments never work out as neatly as this
in practice! Errors of measurement always creep in.

The numbers in the above table were not in fact taken

from an actual experiment. It is very unlikely that the

weight needed to break the first bar would turn out to
be a nice convenient number like 1,000. In engineering,
the most awkward numbers happen all the time. The
questions you find in books are always specially simple
ones. Otherwise you would get so tied up in the details
of arithmetic that you would not notice the important
things, the simple laws behind the complicated numbers.

The numbers in the table above have been simplified,
but the law is real engineering. The strength of a steel
bar really does grow in the way the numbers suggest.

In the table you will see that doubling the thickness
of the bar does not simply double the strength; it mul-
tiplies it by four. Look, for example, at the top two rows.
Changing d from 0.1 to 0.2 doubles the thickness but
multiplies the strength by 4; w changes from 1,000 to
4,000.

Again, if you change the diameter of the bar from
0.2 to 0.4, you have doubled the diameter, and the table
shows that the weight the bar can support is multiplied
by 4. .

This effect is actually found in practice. This principle
would be used by an engineer in designing a structure.

*Diameter is the scientific word for the distance across a circle.
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For example, it would be very important when the en-
gineer was deciding how big to make the supports of a
great bridge.

The whole of Chapter 6 in this book is devoted to ex-
amples of this law. By reading these examples you may
be able to pick up a hint as to why the strength of a steel
bar is related to its thickness in this particular way.

If you were making ropes by putting many pieces of
string together in a bundle, you would find that it would
take four times as many strings to make a rope 2 inches
thick as it would to make a rope one inch thick. The same
law is at work here.

Car Speed cdnd Brakes

In the state of Connecticut, the following law applies
to cars with 2-wheel brakes. When traveling at 20 miles
per hour, the car must be able to stop within 40 feet. I{
going at 30 miles per hour, it must stop in 90 feet. If go-
ing at 40 miles per hour, it must stop in 160 feet. The law
says that if the brakes on a car will not stop the car in
those distances the brakes are defective and must be re-
paired. -

We could write these numbers in a table like this:

Car’s Speed Braking
in m.p.h. Distance in feet

v - s

20 40
30 90
40 160
5c
60

Can you fill in the spaces?
The law connecting v and s is one that we will learn
to write later on. '

You may wonder why we have used v for speed and
s for distance, because v and s do not seem to fit these
words at all. The reason is that these are the letters you
will meet in scientific books. They have been used for
about 300 years, ever since the laws of mechanics were
first discovered.

At that time, scientific books were written in Latin,
and the letters were suggested by Latin words. You can
understand the use of v when you know that the Latin
gives us our word “velocity.” The s was suggested by
the Latin word for “space.”

You will be interested to compare the numbers in this
experiment with those in the first column. There is a
pattern here which we shall see more clearly when we
read Chapter 6.
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SOME SIMPLE LAWS

In the previous chapter we saw several simple ex-
amples of the way algebra helps us to understand sci-
ence. In experiments we arrived at pairs of numbers
which were in a pattern. The task of the scientist is to
find the pattern in the numbers.

In the present chapter we shall suggest several ex-
periments from which you may be able to find laws of
science.

The Platform on Rollers

This experiment requires that you make a piece of ap-
paratus. However, only junk is needed to make the ap-
paratus. A study of the pictures below will show how
the junk is put together.

Plan of CARRIAGE for ROLLERS
SCREW— 2 _NUT
“WO00D or
= SPOOLS | HEAVY
/CARDBOARD
e N
PLATFORM 3

ROLLERS ond

CARRIAGE ==

M T T T T N T T T T —l

BA§E (Marked in inches)

The STARTING POSITION

T2l 3T 4l 3T &l %

For the rollers you can use cotton spools or dowelling.
The platform and base are simply flat pieces of wood.

Put the rollers and the platform in the starting posi-
tion as shown in the picture. Both pointers are opposite
zero.

With your hand flat on the platform, push forward
until the pointer fastened to the rollers is opposite 1.
Where is the other pointer? The other pomter shows
how far the platform has gone.

Push the rollers another inch forward, and see where
the platform is now. Continue in this way for several
more inches and enter your results in the table at the top
of the next column.

As you push the platform forward, you find that it
moves faster than the rollers,

In this experiment, we shall use r to stand for the
number of inches the rollers have gone. We shall use p
to stand for the number of inches the platform has gone.
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Number of inches
platform has gone

Number of inches
rollers have gone

r , p
0 0

L
2 I
3

What law or rule can you see in the numbers above?
Fill in the space in the sentence below. Just a number
is needed.

The number of inches the platform goes is ... times
the number of inches the rollers go.

If you write the same number in the space below you
have this law in the shorthand of algebra.

P= r

The Pulley
NAIL—T"* ~b
-5
STRING~, —a
~3
-2
3- —1
2 - -0

| -_—

0 -

“SPULLEY

This is another very simple experiment. Mark a chalk-
board with numbers as shown. The divisions could be,
say, 4 inches each. '

The actual length does not matter so long as the divi-
sions are all the same.

If you do not have a pulley, you can use your thumb
for the string to go around. Equally well you could use
a pencil or a bottle—any small object that the string can
slip around. You will have to use your left hand to keep
the object you use for a pulley from falling.

As the hand pulls up on the string, both the hand and
the pulley rise. But they do not rise through equal dis-
tances. Try it and see. Checking by the numbers on the

chalkboard, fill in the spaces in the table that follows

at the top of the next page.




Number of divisions Number of divisions
the pulley has risen the hand has risen
a (for shorp) h (for short)
0 } 0/
T
2
3
Theruleish=_____ ]

Note. You may wonder why a was used to show how
far the pulley went. The reason is this. In the question
before, p was used for the distance the platform went.
As “pulley” also begins with “P,” we might have used

p again in this question for the number of divisions the .

pulley has risen. Some readers might find it confusing to
use the same letter with two different meanings so close
together. We use a because the pulley can rise any
number you like to mention.

Home-Made Weighing Machine

The support can be made in any way you like. Wood
or a metal bracket can be used. The bar must turn freely
about the rail.

If you use a long bar, you can have more notches than
the picture shows. A convenient size is to have the
notches one inch apart and the hole in the bar four
inches from the rail.*

It is important that the can should hang from the bar
by a single string as shown. There is a package of old
nails, screws, bolts, etc,, in the can. You must put just
enough in this package to make the bar balance with
the nut in notch 0. Then put one nut in the can. Find how
many notches the hanging nut must slide along the bar
to restore the balance. Next, put another nut in the can,
and so on. Of course all the nuts must be identical with
the nut that hangs by a string. Fill in the table below.

Number of nuts Number of notch
in can giving balance
w for short n for short
0 ' 0
L
2
3 _
4
What is the rule? n = ____ w

*The answer at the back of the book is for a machine of this size. With
different distances, you will get a different law. N

The Bouncing Ball

I stood near a brick wall and dropped a new tennis
ball. T used the thickness of the bricks as a measure. I
noticed the height (h bricks) from which the ball was
dropped, and the height (b bricks) to which it bounced.
I did not expect to get very exact results. Probably I
did not catch the ball when it was exactly at the top of
its bounce.

Anyhow, here are the results I got.

h b
] 0
4 23
8 4%
9 5
12 6%
20 104
28 14
30 15

The results for heights 0, 28, and 30 suggest that the
bounce is just half the original height: b = }h. Look at
the other numbers and see if you think that this rule is
fairly near to the truth.

Nearly always, when we make measurements, errors
creep in. Do not expect to find a simple law that fits all
observations exactly.

See if you get results like these with a bouncing ball.
You may get different laws with a new ball and an old
one. The hardness of the ground will also make a differ-
ence.

Two Notes on Algebra "

1. In arithmetic, we use the sign X for multiplication.
In algebra, this sign is not convenient because it can
easily be mistaken for x.

If you will look back through our work in algebra,
you will find that we have never used any multiplica-
tion sign at all.

On page 13, for example, we used 3x for “three times
the number we thought of.” We did not put any sign at
all for times. _

This was natural. We used “a bag” to picture “the
number of things thought of.” For three times this num-
ber, we drew a picture of three bags. We say ‘‘three
bags”; we do not say “three times a bag.” In our short-
hand we do the same thing. We write 3x. We do not
write 3 X x, as a rule.

In algebra, when we write 5a or 2h or 7x, with no sign
at all between the number and the letter, remember that
each of these represents multiplication. If a stands for
any number, 5a stands for 5 times that number.

We have used this way of writing in our experiments
above. The platform goes 2 times as far as the rollers;
p = 2r. If the pulley rises any number of divisions, the
hand rises twice as many; h = 2a. The number of the
notch is 4 times the number of nuts being weighed;
n = 4w. .

Sometimes a dot is used to show multiplication.
y = 10 « x, then, means y is 10 times x.
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2. The simplest law of all—it is a strange thing that
some questions are hard to answer because they are too
simple. In the guessing game, you may be able to write
the laws y = 2x and y = x + 3, and yet find difficulty
with the following:

Number Caled Number Answered

x y
5 5
2 2
7 7
3 3

no
4 e

You will be able to fill in the spaces above. The num-
ber answered is the same as the number called. But how
shall we write this law in our shorthand?

We write y = x

The Law of Floating

This law is used in the design and making of ships,
rafts, pontoon bridges, and
balloons.

Get some tin cans of differ-
ent sizes. Fill each can with
water, weigh it, and write
down the weight.

Empty the cans and let
them dry. Put old nails or
scrap metal into one of the
cans, and float the can in a
bow! of water. Keep adding
metal (without tipping the
can) until the can is on the
point of sinking, as shown in
the picture.

Remove the can, dry it, and weigh it with the metal
still in it.

Do the same for another can. Try the same experiment
with several cans.

What do you learn about the two weights—the weight
of the can full of water, and the weight of the can with
enough metal to make it almost sink?

Code:

W = the number of ounces the can full of water weighs

M = the number of ounces the can with its load of meta’
weighs.

Which of the following laws agrees best with the re-
sults of your experiments? (Of course, you expect some
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errors of measurement.) None of these laws will fit your
results exactly.

(HW=M+35 (2) W= 2M
(3IM=2wW @M=W
(5)W=2M+3

The law seems to be ____

The law you have just discovered here is known as the
Principle of Archimedes. Archimedes (4r’ki-m&’déz)
was a famous Greek mathematician who lived more
than 2,000 years ago.

Power for Airplane Engines

The following information about airplane engines was
taken from the Encyclopaedia Britannica. It tells us the
weight (in thousands of pounds) that various airplanes
can carry, and it also tells us the power of the engine in
each plane (in hundreds of horsepower). We should use
P for the power and W for the weight.

Airplane Power P Total Weight W
- in hundreds of in thousands of
horsepower pounds

DC-3 24 24
DC-6 84 i 95
Convair 240 42 40
Grumman G73 12 . 12%
Beech Model k8S 9
Lockheed Constel-

lation 88 94
Boeing Strato-

cruiser 140 1424

There is no simple law that connects these numbers
exactly, but they do come quite close to a very simple
law. This law tells you about how much power to pro-
vide for an airplane of known weight.

Which of the laws below do you think is most suit-
able for this purpose?

{(1)P=2W (2)W=2P
(3)P=W-—-10 () P=W+10
5)P=W (6)P—2W + 5

The most suitablelawis . ... . . .

If you were designing an airplane 51m11ar to one of the
types above, and this plane was to weigh 70,000 pounds
fully loaded, about how much power would you expect

it to require? . :

e T



You may sometimes think, “Why learn math if I

am interested in science?” There are many different -

kinds of science—astronomy, biology, chemistry, elec-
tricity, gravitation, heat, light, sound, magnetism, me-
chanics—to mention but a few. If you are interested in
electricity, why not learn just the calculations needed
in electricity? Why bother about math?

This may sound reasonable, but in fact it would be
extremely wasteful. Look at_the following list of ques-
tions. Do not be disturbed if you cannot answer them.
The point is to see if you can discover any connection
between them, even though they seem very different.

1. How high must a cliff be for a person on it to see
12 miles out to sea?

2. What shape is the jet of water in a drinking foun-
tain?

3. How much floor covering do you need for a square
room 10 feet by 10 feet?

B

4. In what path does a comet move around the sun?

5. If you double the length of a pendulum, do you
double the time it takes for its swing?

6. What is the best shape for the mirror in a reflect-
ing telescope? :

7. How does the strength of a steel bar depend on its
thickness?

8. How does the heat produced by an electric heater
depend on the current passing through it?

9. At what rate does the illumination fall off, as you
move away from a lamp?

10. How does the pull of the earth decrease as you
move away into space?

11. How does the pressure of the wind on a house
depend on the speed of the wind?

12. If you double the width of a can, what effect does
that have on how much water it will hold?

13. How does the braking distance of a car depend on
its speed?

14. By what law does a stone fall?

15. If you could enlarge a flea to the size of an ele-
phant, would it still jump as well?

m

AN IMPORTANT LAW

These questions deal with many different things, yet
all of them depend on one simple mathematical pattern
—the pattern of the numbers 0,1, 4,9,16,25, ..

Look through this booklet again from the beginning.
How many places can you find where these numbers, or
something like them, came in? Write in the spaces be-
low the places where these numbers appeared, and what
subject they had to do with.

Page Subject

You can draw the shape of a jet of water in this way.

Take some graph paper, and mark the points A, B,
C,D, E, F, G. These are evenly spaced. You can choose
the distance between them for yourself.

From these points we draw lines straight down. EM
and CL are 1 inch long. FN and BK are 4 inches long.
AJ and GP are 9 inches long. Connect the points J, K,
L, M, N, P with a curve as shown.

If you fasten a hose to a water faucet, you should be
able to make a jet of water run in the curve you have
just drawn. You will need to adjust the faucet until the
water comes out at the right speed. If you have chosen
a large distance between the points A and B, the water
will have to come out faster for the jet to fit your curve.
If you have A close to B, your curve will fit a jet squirted
at a low speed. You can test your curve by holding it
close to the jet of water.

We have now answered Question 2 in our list.
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The curve we have just drawn is called a parabola
(pa-rab’4-1a). A comet passing the sun often moves in

The curve of the reflector of an

auvtomobile headlight is the same

as the curve made by the jet of
water, '

a curve of this kind (Question 4). This curve is also
used for the mirror of a reflecting telescope (Question
6). You may have noticed that the reflectors of auto-
mobile headlights use this shape.

Cans of Water

Now for an experiment using cans of water in a dif-
ferent way. Find two cans, one of which has exactly
twice the width of the other.

In the picture, can B is twice as wide as can A. (For-

can B, I used a large can that had contained pineapple
juice. It was about 7 inches high and 4 inches wide. Can
A had contained frozen concentrated orange juice. It
was about 4 inches high and 2 inches wide.)

The question is, “How many times must you fill can
A with water and empty it into can B, to make the water
in B stand as high as the top of can A?”

Answer: ____ . ______

It is difficult to find cans just the right sizes for this
experiment. If you like, you can use sand instead of
water, and make containers out of cardboard.

If you are willing to take some trouble, you can make
a whole series of containers. They should all be the same
height. The first, A, can be any width you find conven-
ient. The second, B, must be twice as wide as A. The
third, C, must be 3 times as wide as A. If you make
a fourth, D, it should be 4 times as wide as A.

How many times can you empty A into each of the
other containers? The answers are all whole numbers.

B is twice a8 wide as A. 1t holds ... times as much as A.

C is 3 times as wide as A. It holds ________ times as much as A.
D is 4 times as wide as A. It holds ______ . times as much as A.
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Pennies in:Circles

&

On a piece of paper draw. a circle of a radius of 1 inch,
another of radius 2 inches, and another of radius 3
inches.

How many pennies can you put inside each circle?
Each penny must lie flat on the paper, and no penny
must stick out over the circle it is in.

You can put ______- pennies inside 1 inch circle.
You can put ________ pennies inside 2 inch circle.
You can put ___ pennies inside 3 inch circle.

Is it true that, if you double the width of a circle, you

double the number of pennies you can put in it?
If not, is the answer more than double or less than

double?

- If you multiply the width of the circle by 3, do you mul-

tiply the number of pennies it can hold by 3? .

If not, will it hold more or less than this? ... s

Putting pennies into a circle, a lot of space is left be-
tween the pennies, and different students may pack the
pennies in different ways. The answers to these experi-
ments may not be the same each time the experiment is
done. But these experiments show roughly how much
more room there is in a circle when its width is multi-
plied by 2 or by 3.

The Square Law

The numbers 0,1, 4, 9,16, are called the square
numbers. You can see the reason for this name:

0 1 4 9 16

We met these numbers at the beginning of Chapter 2
when we worked out 0 X0, 1 X 1,2 X2, 3X3,4x4.
These numbers have something to do with all the ques-
tions given in the long list early in this chapter.

If you look back to page 19, you may see that they
have something to do with the strength of a steel bar
(Question 7). If you double the width of the bar, you
multiply its strength by 4. If you treble the width of
the bar, you multiply its strength by 9.

- On page 19, you may see that the square numbers
also come into the law for the braking distance of a car
(Question 13). \



The Pendulum

/
/
/
’e |
The fact that a swinging weight //
will go back and forth according | /
to a definite law is used in making /
many clocks. /
/
!
-

It is very easy to make a pendulum. You need only
tie a small object, such as a metal washer or nut, to the
end of a thread, and hang this thread from a nail. Then
set it to swinging.

It is hard to time a single swing of a pendulum. If you

allow it to make 20 to 30 swings, and see how many sec-
onds this takes, you can work out the time of a single
swing quite accurately.
" Does it make any difference if a heavy nut or a light
nut is tied to the end of the thread? Make several pen-
dulums, using the same length of thread, but with dif-
ferent weights on the end. Time 30 swings of each of
these. Record what you observe.

Pendulum Weight Thread Time
of Nut Length for Swings
No. Y
No.2 - . R
No.3 .

Conclusion: If the length of the pendulum is kept fixed,
increasing the weight of the nut makes the time of swing

longer? . .
shorter? ...

leaves it about the same? ________

Now we study the effect of changing the length of the
thread. Use the same nut, but change the length of the
thread by which it hangs. See how long it takes to make
30 swings and note the results.

Length of Thread Time for 30 Swings

Conclusion: If you make the thread longer, the time the
pendulum takes to swing

getslonger? _ ..
gefs shorter? . __

stays the same? ______.

Now we are ready to look for the actual law. Take
any of your pendulums and see how long it takes to
swing. Now try to make one that requires exactly twice
that time.

The answer is simple. No fractions come into it—only
a whole number.

Do you have to multiply the length of the thread by
2?7 by 3?7 by 4?7 by 5? by what? Or perhaps you must
divide the length by 2, or 3, or 47

What would you do to make a pendulum that needs
3 times as long to swing? Experiment with this question.
The answer uses only whole numbers.

Conclusions:
To make the swing of a pendulum take twice as much

time you haveto ... . the length of the thread

by
To make the swing of a pendulum take three times as

long,you haveto . .. the lengthby ..

If your school is a high building, you may find it pos-
sible to hang a very long pendulum to some place. Be-
fore you fix it up, try to work cut how long it will take
to swing. Then, test your guess by seeing what it actually
does.

Writing Squares and Other Numbers

As you have seen, the square numbers arise in all
kinds of scientific applications. We should like to have
a way of writing the square law in the shorthand of al-
gebra. And there is a way of writing it. To explain it, we
go back to a question in arithmetic.

Suppose we choose any number, say 2. We can mul-
tiply 2 by itself. 2 X 2 = 4. We can multiply the result
by 2 again. 2 X 4 = 8. If we like, we can multiply by 2
again and find 2 X 8 = 16.

If we want to show that these numbers came through
multiplying by 2 again and again, we can write:

4=2x2
8=2Xx2X2

16=2X2X2X%X2
Fill the spaces below so as to continue this pattern:

e T2IXIX2IXK2X2
64=2X2X

e Tm2X2IX2X2X2X2X2
25
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If you go on long enough like this, you will come to
results like:

512=2X2X2X2X2X2X2X2X2

In the same way, you could start with 3 and get:
9=3X3
27=3 X3 x3
=3 X3IXIX3
243 =3 X3 X3IX3IX3I
729 =3 X 3 X

People get tired of writing these long strings of num-
bers, so naturally mathematicians have tried to find
some shorter way of writing these things.

Suppose we try to invent a way of doing this.

You want to tell a friend that you are thinking of
2 X 2 X 2 X 2 x 2. Really there are three things that you
want to say:

1. You want to tell him the kind of thing you are do-
ing. You are choosing any number and you are multiply-
ing by the same number.

This tells him something, but not enough. You
may be thinking of 2X2x2X2X2 or 3X3X3 or
7XT7X 17X He does not know which.

2. You must tell him what number you have chosen, 2.
Now he is much nearer. He knows that you are thinking
of 2X20r2x2X2o0r 2xX2xX2X 2 or something like
these. You still have to tell him when he is to stop multi-
plying by 2.

3. The third piece of information tells him to write 2
down 5 times: 2 2 2 2 2, and put multiplication signs
in between. Now he has your number exactly:
2X2X2X2Xx2

So your message has to say (1) keep multiplying, (2) .

use the number 2, (3) write it 5 times.

A mathematician can give this message in a very short
form. He just writes 25.

How does this give the message?

The 2 shows that we have to keep writing the num-
ber 2. The 5 “up in the air” shows that 2 has to be
written 5 times, like this222 22,

How do we know that multiplication signs must be
written between these numbers? That is simply an
agreement. Whenever you see a sign like 2% or 3* or 10¢,
it is understood that we are multiplying again and again.
This type of sign is used only for repeated multiplication.

So, 2 means 2 X 2 X2 X 2 X 2.
The same code can be used with other numbers.

Example 1. What is 3*? We have to keep writing 3.
How many times do we write it? The number “in the
air” says, “Write it 4 times.” Now we have 3 3 3 3. To
complete it, we write multiplication signs between.
Why ? Because we always put multiplication signs when
we are dealing with something like 3.

So we get 3 X3 X 3 X 3.

Example 2. What is 10?7 We have to write 10 again and
again. How often? 6 times: 10 10 10 10 10 10. Put mul-
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tiplication signs between: 10 x 10 X 10 x 10 x 10 x 10.
Here are some “code names” for numbers:
27, 3%, 103; 5% T3; 102

Can you fit each of these to one of the numbers below?

10 X 10 7 X7 X7
IXIXIXIXIXS3 2X2X2X2X2X2X2
5xX5 10 X 10 X 10

Code names like 2° and 3* are important in science.
They have many applications besides those discussed in
this book.

Few students learn this code all at once. Many stu-
dents fall into the following error. They see 3*. They
think, “This has something to do with four threes. So
it must mean 12!”

It does not mean 12. For sure, 12 has something to do
with four threes. Twelve comes when you add four
threes. 12 = 3 4+ 3 4+ 3 + 3. But 3* comes when you mul-
tiply three by itself four times. 3* means 3 times 3 times
3 times 3, which is 81.

3t =3 X3 X3 x3=8l1.

You should practice with this code until you know
it thoroughly.

The answers to the questions below are all in the fol-
lowing list: 8,9, 25, 27, 32, 36, 49, 64, 81, 100, 121, 125,
243, 1000.

Can you find which number is the answer to each of
the following questions?

2B=_____ 52 = 7P=___ .
2=____ 1080 =

3= =

= 6=___

1M2=___ 8= _____ 100=____
53 =_ 3=

The Squares

This picture shows the e o o * o
square number 25. We have
5 rows with 5 dots in each. So e o+ 0

the number of dots is 5 x 5.

This number we caf write
in our code. In 5 X 5, the ® o o o .
number chosen is 5, and it is
written twice. So+ 5% is the
code name for 5 X 5.

52=5x5=25
52 is usually read “5 squared.”
We can write all the square numbers in this way.

0°=0X0= 0
P=1x1=1
22=2X2= 4
32=3x3= 9
42=4x4=16

52 =15 X 5 =25, and so on.



Fill the spaces below:

,,,,,,,, =6 X6=236
... =7 XT7=49
2= = 64
,,,,,,,, =9X9=_____.
,,,,,,,,, = ___. =100

We can write 32 and 42 and 52. Is there anything spe-
cial about 3, 4, and 5? No. You can choose any number
you like. If you say 17, we can write 172, which means
17 x 17. If you say 23, we can write 23% which means
23 x 23. ’

We could play this as a guessing game. Whatever
number you call out, I multiply that number by itself.
We could write it like this:

You call out I answer
3 32
4 42
N 5 ) 52
17 172
23 232
We can use x for “the number you call out” and write
the rule like this:
You call out |l answer
x x?

This means: you call out any number you like; I an-
swer that number multiplied by itself. This is what
Nancy was doing in the game on page 7.

We might put it this way. “You call out x; I answer
x times x.” In this sentence x stands for any number
you choose. If you choose 3, we must put 3 wherever x
comes, like this:

You call out x; I answer x times x.
You call out 3; I answer 3 times 3.

Of course, you do not have to choose 3. You may
choose any number you like. Wherever x comes, you
erase x and write the number you have chosen. If you
choose 5, for example, it will be like this:

You call out x; I answer x times x.
You call out 5; I answer 5 times 5.
We could make a machine to show this.

The Braking Car

20 mph szl 40 feet

30 mph @___9(1_?&___

160 feet

40 mph gl _

On page 19 we gave some Connecticut regulations for
brakes on cars. Here they are: :

v S
20 40
30 90
40 160

The numbers 40, 90, 160 remind us of 4, 9, 16, which
are square numbers. So perhaps squares have some-
thing to do with this table. You get a square number
when you multiply any number by itself. Let us take the
numbers under V and multiply them by themselves.

v VXV S
20 20 X 20 = 400 40
30 30 X 30 = 900 90
40 40 X 40 = 1600 160

The numbers in the middle are not quite the same as
those under S, but you will see a pattern. If we divide
the numbers in the middle by 10, we get the numbers
for S.

The Connecticut traffic officers seem to use the follow-
ing rule: .

See how many miles per hour the car is doing.

Multiply this number by itself.

Divide by 10.

That gives you the number of feet the car should need
to stop.

We have shorthand for the number of miles per hour
the car is doing. We call it V. So the rule is, find V times
V; then divide by 10.

The code name for V times V is V2,

So-we can say the whole rule in a shorter form. Find
V?2; then divide by 10.

We would write this:
V2
§=—
10

where V is the speed in mph and S is the braking dis-
tance in feet.
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The Falling Stone

The numbers 0, 1, 4, 9, 16, 25 . . ., as we saw earlier,
are called the square numbers. The law for a falling
stone is closely connected with these.

t h

the number of seconds the number of feet
a stone falls the stone falls

0 0
1 16
2 64
3 144
4 256

The numbers written under h are found by taking the
square numbers and multiplying them by 16, like this:

0xX16= 0
1X16= 16
4X16= 64
9 X 16 =144
16 X 16 = 256

The rule for finding h can be stated as follows:
See how many seconds the stone has fallen.
Multiply this number by itself:
Multiply the result by 16.
For example: How far does a stone fall in 5 seconds?
Here we begin with the number 5.
We multiply it by itself. This gives 25.
We multiply 25 by 16. This gives 400.
So, in five seconds, a stone falls 400 feet.
In shorthand: when t =5, h = 400.
The rule could be written in shorthand: Find t times t;
then multiply by 16.
The code name for t times t is 2.
So we can say the rule in a shorter form. Find #*; then
multiply by 16.
This would be written*

h=161+

This rule can be used to find the height of a cliff.
Throw a stone from the top and see how many seconds
it takes to strike the land below.

fhe Steel Bar

On page 19, an imaginary experiment with a steel
bar was described. a
The formula that connects d and w in the table on
page 19 is:
w = 100,000 d2

For example, if d =0.3, we have d2 = 0.3 X 0.3 = 0.09
Multiplying this by 100,000 gives 0.09 x 100,000 = 9,000,
This agrees with the value of w given in the table,

The Use of Decimals. You will notice how decimals
come into this question. In science and engineering we
often have to deal with decimals. When we measure
something, it is unlikely that it will give an exact whole
number.

If you plan to become a scientist or an engineer, you
should practice calculations with decimals until you are
thoroughly at home with them. In particular, learn to
feel how big (or how small) numbers are, A human
hair, for instance, is about .003 inch thick. This helps you
to imagine the size of the number .003.
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A Mistake to Avoid

We have used 52 to stand for 5 X 5, and x? to stand for
X times x. We call 5% the square of 5, and x* the square
of x.

Whenever we multiply a number by itself, we say
we are squaring it.

Examples:
Square 3 Answer 9
Square 5 Answer 25
Square 2 Answer 4
Square 8 Answer 64
Square 6 Answer
Square 4 Answer
Square 7 Answer _
Square 10 Answer ________
Square 1 Answer

Tt is not quite clear what we should mean by
2 x 32

Jack might reason like this: 3% means ‘“the square of
3”7 which is 3 X 3, and that is 9. So 2 X 32 should mean
2 X 9. The answer is 18.

Bill might argue this way: 2 X 3 is 6. So 2 X 32 should
mean 62, This is the square of 6. The answer is 36.

Both boys are using sensible arguments. In fact, they
are doing the same things but in a different order.

Jack says,

Take the number 3.
Square it.
Then multiply by 2.

Bill says,

Take the number 3.
Multiply it by 2.
Square the result.

As we have seen, these lead to different answers,
Because both arguments are so sensible, we have to
make an agreement, so as to avoid misunderstandings.
All the mathematicians in the world have agreed to use
Jack’s way of looking at things.

So you should read

2X 32as 2X 9= 18
2X 42 as 2xXx16= 32
3X 52 as 3xXx25= 75

4xX10%2 a5 4X ___=400
5X102as 5X .= ____.
2X 62as 2X ___= 72
10X 62as 10X = ____
2X 52 as 2X_._.= 50

4X 5 as AX__=____
10X 52 @as X __=___
4X 3 as __X__=
5X 3teas _X._. .=

2X10%2as X ___=



In the same way, 10x2 corresponds to the instructions:
Think of a number x.
Square it.
Multiply the result by 10.

If you like you can read 10x? as “‘ten times the square
of x.”

A little earlier, we considered The Falling Stone and
The Steel Bar. The calculations in these cases would
seem wrong to you if you used Bill’s way of looking at
the equations h = 16t and w = 100,000d2. You should
always look at such equations in the way Jack looks at
them because that is what the people who write the
equations expect you to do.

Can you fill in the tables below?

Table | y = 3x?

Table Il y = 2x*

=]

-—r

g b W N

Table I .y =10x2

-—r o
i
|
i
i

au b 0N

Table 1V

=]

-

wu A W N

A Way of Checking Your Answers

The answers in Table IV should be half the answers
in Table III. Also, if you add together the answers in
Tables I and II, you should get the answers in Table IV;
that is, the first number in Table I added to the first
number in Table II, should give the first number in
Table III, and so on for the second, third, fourth, and
fifth numbers.

wa Far Can You See?

Suppose it is a clear day and you are at the seaside
or in some place like Illinois where the ground is very
flat. You are at the top of a building or in a plane. How
many miles will you be able to see?

Or you can put the question the other way round and
say, “If you want to see a town 30 miles away, how high
must you be?”

Shorthand: Let n stand for the number of miles you
want to see; h for the number of feet you have to climb
above the surrounding flat country.

There is a rule about the relationship of h to n:

h = 24n?
In words:
Take the number of miles you want to see.
Square it.

Find two-thirds of the result.
Find the height from which you can see each of the
following distances: 8

n
3 -
6

9 .

30

60

90

If, later on, you study geometry; you will learn the
reason why this rule works.

The Force of the Wind

The way the wind presses against a building can be
found from the formula

W~ 300

Here v stands for the speed of the wind in miles per
hour, w stands for the weight in pounds that will press
on each square foot of a building.

v w
10
20

30 . -
40 \
50
60
70
80
90
100
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If you work out how many square feet there are on
the side of a car, it will not surprise you that a high wind
can sometimes blow a car right off the road.

Electric Heater

If you took an electric heater that was designed for
110 volts, and connected it to a 220 volt power supply,
the current would be twice as large as the manufac-
turers intended, the rate at which heat was produced
would be four times as big—that is, if the wire did not
melt or a fuse blow. If you multiply the current by 3,
the rate of heat generation is multiplied by 9.

Here again we have the square numbers, 1, 4, 9, and
so on.

The Pull of the Earth

The square numbers also come into the theory of
gravitation. At present you are about 4,000 miles from
the center of the earth. The earth pulls you toward it-
self —that is why you stay on the floor. If the earth did
not pull you, and you gave a little push with your legs,
you would fly up and hit the ceiling. It is the pull of the
earth that holds you down.

If you could get 8,000 miles away from the center of
the earth—just twice as far away as you are now~the
earth would still pull you, but its pull would not be so
strong.

Some families have little weighing machines worked
by springs. If a tower could be built 4,000 miles high, and
you stood on such a weighing machine at the top of the
tower, it would show that you had very much less
weight. You would be twice as far from the earth’s
center as usual; your weight would be V4 of its usual
amount.

If you went to 3 times the usual distance, your weight
would be % of the usual amount.

This table shows how distance and weight are con-
nected. Can you fill in the gaps?

Distance Weight
1 1

Ya

30

We could say in shorthand that if you go n times as

far away, your weight becomes of what it was
before you went. ,

We say that gravity obeys the inverse square law. “In-
verse” means that distance and weight vary in opposite
directions—the bigger the distance, the less the weight.
If you multiply the distance by n, you divide the weight
by n2.

The inverse square law is very common in physics.
The same law holds for electric charges—if you double
the distance between them, you divide the force by 4.
The same law holds good in magnetism.

The inverse square law occurs also in the theory of
light. Suppose an electric lamp produces a certain de-
gree of brightness at the distance of one foot. At a
distance of two feet, it would produce !4 of that bright-
ness, at 3 feet, only 14, at 4 feet, only 14, and so on.

nZ

The Widespread Square Law

At the beginning of this chapter, we mentioned fifteen
different questions, all connected with the idea of n% We
have suggested the answers to all of these except No.
3 and No. 15.

No. 3 is very simple. To cover a square floor, 10 feet
by 10 feet, we need 100 square feet of floor covering.
100 =10 X 10 =10%. Many arithmetic problems deal
with questions of this kind.

No. 15 we cannot go into detail. The idea behind it can
be learned from a simple experiment. Suppose you have
a cardboard box. Now if you make another box to twice
the scale, you will find that you use 4 times as much
cardboard, and that the new box holds 8 times as much.

In the same way, if you could take an animal and
double its scale, you would multiply its weight by 8,
but it seems that its strength would only be multiplied
by 4. Thus the larger an animal gets, the less nimble it
becomes. A flea enlarged to the scale of an elephant
probably would be unable to jump at all.

We have by no means mentioned all the places where
the Square Law occurs in science.

If you stretch a spring n inches, the energy stored in
it is proportional to n®. If the speed of a car is multiplied
by n, the damage it can do is multiplied by n2. If you
throw a ball n times as fast as another person, it will
travel n? times as far. If you multiply the thickness of
a plank by n, you multiply the load it can support by
n? There are countless other applications of the law.

There are, of course, many other laws that oceur in
nature and that you will meet as you go on with your
studies.

In this book we have tried to show how algebra helps
you to write down scientific laws. We have touched only
the beginnings of algebra and the beginnings of science.
H you wish to study science or engineering, or if you
are interested in mathematics, you should learn more
algebra and keep practicing it until you can think in
algebra without any effort at all. You will find this a
great help. And it can become very interesting, too.
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Answers to Problems :

: Page 7 Page 17
, 3. 'Subtract number from 1000. F6. y=4x
f 4. 10,7, & F7. y=10x
" Multiply the number by %, or divide it by 2. F8 y=2x+1
v 5. Add 2 to the number. F9. y=2x+3
i 6. Subtract 3 from the number. F10. y=3x+1
7. Subtract the number from 10. _ Fll. y=2x—1
8. Multiply the number by 3. F12. y=3x—2
9. Divide the number by 4. Page 19
10. Multiply the number by itself. Steel Bar: 36,000; 49,000.
) Page 8 Car Braking: 250; 360.
N Il A2, 0 2 6 12 20 30 Page 20
i 2 4 6 8 10 Rollers—p = 2r
2 2 2 2 Pulley—h = 2a
A3. 0 3, 8 15 24 35 Weighing Machine—n = 4w
3 5 7 9 11
Page 22
2 2 2 2 2. Answers are 11, 4
Ad. Last line: 5 X 8 =40 : . : : . ron
O 4 10 18 28 40 Law of Floating: M = W
Airplane Engines’ load: P = W
4 6 8 10 12
2 2 2 2 Page 23
A5 4 X 8=232; 5X9=45. Page 7. Nancy’s rule.
O 5 12 21 32 45 Page 8. Arithmetic pattern Al.
5 7 9 11 13 Page 8. Arithmetic pattern B9.
- 9 2 2 2 Page 19. Steel Bar
Page 9 Page 19. Car Braking.
B1. All answers are 1. B2, All answers are 2. - Page 24
B3. 5X7—-4x%x 8 ) Cans of Water—Four times; 4, 9, 16.
6X8—-5%X 9 Pennies—More than double; No; More.
7X9—-6X%X10 Page 25
All answers are 3. Pendulum—About the same; Longer; Multiply by 4.
B4. All answers are 10. Multiply by 9.
B5. 6 X10-7 X8 Writing Numbers—64 =2 X 2 X 2 X 2 X 2 X 2,
7X11—-8x9 . 32. 128.
Answersare 0,1, 2,3,4,5. Page 26
B6. 7x12—-8x10 81;729=3x3X3X3xX3x3;
AnswersareO, ],2,3,4. -IOX'IO:102;7X7X7:73;
B7. 7X8—=5x 9 3X3x3x3x3x3=3%
8x9-6x10 2X2X2X2X2X2X2=25
Answers are 7, 8, 9, ]0, ]1, 12. 5% 5= 52; 10 X 10 X 10 = 108,
B8 5x7-4x6 28 = 8; 52 = 25; 72 = 49; 2° = 32
6xX8—35x7 , . 10°=1000; 3+ =81; 3 =27; 3 =9
Answers are 3,5, 7,9, 11, 13. 62 = 36; 112 = 121; 82 = 64; 102 = 100
BY3. 5x5—-4x4 53 = 125; 35 = 243
6 X6 —5X5 Page 27
Answers are 1,3,5,7,9,11. o o . .
Pages 10 and 11 6% 7°; 8 X 8; 97 81; 105 10 X 10.
C1. The answer is always 2. Page 28
C2. Not a trick. 36; 16; 49; 100; 1.
B Page 11 _ Problems at bottom of column 2:
C3. Not a trick. : 100; 5 x 100 = 500; 36; 10 X 36 = 360;
; C4. Answer is always 2. 25; 4 X 25 = 100; 10 X 25 = 250; 4 X 9 = 36;
Page 15 5 X9 =45; 2 x 100 = 200.
5 x+2 Page 29
6. x—3 . : Table I: 0, 3, 12, 27, 48, 75.
7. 10 — x Table II: 0, 2, 8, 18, 32, 50.
8. 3x Table 1iI: 0, 10, 40, 90, 160, 250.
i x Table IV: 0, 5, 20, 45, 80, 125.
J. ax or 4 How far can you see?
Page 16 h = 6, 24, 54, 600, 2400, 5400,
: . F2.y=x+2 Force of the wind: w =}, 1, 21, 4, 61, 9, 122, 16,
3 F3. y=x+3 203, 25.
F4. y=x—1 ‘ . Page 30
F5. y = 2x - The Pull of the Earth: 1. ; sL; ;2 95 10.
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