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SOME ELENENTARY HOTES ON MEAIURE AND INTEGRATION. W.WsSawyer.

Students may zometimes have the impression thet methematicliang
produce elaborate theories for no particuvlar reason spart from
& kind of professional etiguetts. Sueh guesiions as "What do
we mean by g _number 7?9 or "What is gres ?¢ do not strike the
average cltizen as being among the more uwrgent questions of the
427« fnd indeed, @3 a mabtter of history, very Little
attention was glven te such questions, even by mathematiclansg,
until the 19th century, by which time msthematics had reached
a stage of conzidersble elaboration, Sometimes, one must
2duwit, 2 mathematiclan is led to investigate an apparently
aimple ides because he has formed the habit of systemstic
expoeition ;3 after carefully developing some tTheory with
precise definitions of every concept introduced, & lecturer
or suthor may well be reluctant to shange key and say, Now
we come %o gres and of courze you &1l know what that iz2,.®
But @ more positive and compelling force ig mlac at work.
It may hapspen that,; irn the course of =zome investigation,
2 mathematiciar needs to determine the eves of some reglon,
the strteture of which is 30 complicated %hat he begine o
doubt whether it evenr hazs an ares , and to wonder, if it has,
hﬂﬁ%ﬁ@? that aree i2 %o ba defined and calenlated, In such
g aituation. & theory of arves iz not a luruyry, nor oven
gimply & way of gatisfying onezelf thai the work is logleally
gound ; 1% is & practicsl neceseliity,without whieh no further
advanse iz possible. The Lebesgue theory of messure and
irtegration iz sn exeellent example of & branch of
nathematics that has developed under the pressure of szuch
necessily.
In the sarly stages of cmliculus a student iz not aware
of any such PYressure. He secepts without hesitation that
there ig an area under the pavabola ¥y = ¥ beiween ¥=0
and =1 snd thst e
ﬁ o x% dx gives this area. Yet even in
g2 firet oourse of ealoulus, the first signs of complication
begin o appear. 3uppose that in Plgure 1
he wishes %o ecaleulate the lengith of the
arc ABC, whieh is half the circumference
of the eirsle x%4y%1l, He knows he ghould
obtein the answey 9 . The stendayd Tormuls
for the lempgth of an sre leads him to weite

the int@g?azf

+ {i-2?) ~1/2 a4 . Pigure 1.

=l

the integrand of which is infinite at both ends of the interval,
eorrespending o the faet that the tangents at A and C are

vertical.

If we interpreted this integral as ,
#n area, we would &rrive at the dlegram 5
shown in Figure 2; and be led %o
eonjecturs that, although the ghaded
region extends o infinity, it yet
has the Tinite area 1w

Fleure 2.
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We ean give s Tormal definitiesn of what we mean by the erea
of the shaded region by fellowing Cauchy’s ideas, We
suppose & to be a 1little to the right of -1, b = 1ittle

t6 the left of +1, ané consider what happens to the aves
under the ocurve between 2 2nd b in The 1limit when g

tends to ~1 and b teo +1,

If, as in Pigure 3, a graph haa
& number of discontinuitiez, we oan
cope with the situation by evaluating
the integral in the interveals between
the discontinuitlies and adding the
results,

Thiz approach, whelher we are
dealing with infinities or finite Figure 3
digscontinuities, depends on thare
being intervalsgbetwsen the exceptional polntssin which the
funetion 1s finite and continuous. But the development of
mathematies 1ed quite naturally to the study of functions
whose digocontinuities were everywherg dense. that is to say,
s0 orowded together that you sould never find spsce between
them big enough to hold an intervel, The first person to
reslize that sueh & possibility existed was Riemann in
1854, “Riemann Theory of Integiation® flgures in most
intyroductory courses in analysis, snd it is & great pity
that expositors rarely mention what led Riemann to work
out his theory. He di1d not sst out to inveatizate
integration 3 he was writing & paper on Fourler serles,(‘)
a subject of great importance both in pure and applied
mathematice, and one in which integrstion is & standard
tool, In this work he arrived af some functions of an
entirely novel kind, and had to pause to show that the
ugual prosedures of Fourier series, involving integration,
could in fact be applied to these functions,

Fourier series originally arcose,eround 1730, in
gonnection with musieal vidvrations. The expreasion
by, 8in t represents & pure tone 3 by ain 2ZU eorregponds
£o its fivat harmonic s by sin 3t to the next haymonie,and
20 on, When a musieal instrument is played, all the
harmonics are lisble to be produced simultanecusly,
corregnonding to an expression of the form

by 3in ¢ + by 8in 2% + B,y 2in 3T + sssecce

The characteristic sound of an instrument depends on the
ratios between the coefficients by, in thls serles.
Similar terms involving cosines mey also appear. Such
geries are nown as Fourier meries, although they had been
studied long before the time of Fourier,

} paper XIX in "Collected Works of Bernhard Riemenn® {(Dover).
Thisg paper isg in Gsrman.
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One of the great controverasies of the 18th century was
concerned with The queation of what functions could be
represented by Fourier meries. Thiz question was vital for
applicetions of Fourier series made at that time and since then,

For inatance,could a Fourier series

represent & graph made up of breken

lines, of the kind shown in Figure & 7

Eminent mathematiciene, notsbly

Euler snd dt*Alembert, refused to Figure &4,

believe it could, Yet in fact

Fourier seriesz can be found whieh represent this and other much
more complicated funotiona. In

Flgure 5 we see pieceg of & line,

a parabola snd a cizrcle,and these

pieces do not even join together

to give a eontinuvous funcition. o

Yet a Fourier series exists j//’ngf‘__h“\
which has the graph shown in

Figure S.
It will be noticed that L
Figure 5 poasseszsea & certain symmetry.

Thig symmetry is due to the fact that,

for purpeses of illustratlion, it is Figure 5.
quite suffisclent te consider series

consisting of sines alone, Az sin (27 - k) = - g2in k for
every k, s function representsble by slnes slone ig bound

to have this type of symmetlry. )

In Pigure 5 @ dot will be noticed in the middie of each
of the jumps. This is typicsl of the way Fourier sevies
behave ;3 whan they nmake 2 jump, they put a stepping atone
half way asro8s.

The importance of Fourier series forced mathematlclians
to gtudy graphs much wllder and more irregular then anything
gver eongidered before, Riemann wag the first person to
vealize that a Fourier meries could have a graph that eould
not even be drawn,becsuse its discontinuities were 80
srowded that the pencil never had & chance Yo move along the
surface of the paper. He gave an example of such a function
1w the paver spacifled in the footnote on page 2, The
exanple we shall now give ig in essentials the same as
Riemann®sa, We have modified Riesmann®s ezample in such =z
way as to make the work arithmetically gimpler,

Az @ fivst step towards comstructing our example,we
use a stendard reault of Fourler series. Consider f(x)
where
fiz) = asinx - (1/2) 2in 2z + (1/3) sin 3x - (1/B) sin 4x + .,

Tt 1s well known thet the grsph of £{x) in the interval (0,2m)
iz ag shown in Pigure 6 (&) on page 4 of these notes,

outside the interval (0,2nm) this graph is repeated
indefinitely, since the fumetion has period 2vw.

Pigure 6(b) shows the graph of (1/2} £{2x) , with

both the vertical scale and the pericd half of what they

were for f{x). Similarly 6(c) shews the graph of (1/4) f(kx),
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Ag Figure 6{e) showz, f{z) has & diccontinuiiy in
the middle of the intervael. In 6(bH) discontinuities are
meen 1/4 end 3/4 of the way seross ; in 6{c) the Jumps
oceur et 1/8, 3/8, 5/8 and 7/8 of the way across. For
the function -
2"2 (20 x)

discontinuitiesz correspond
to esch fraction of the interval with the form (2k+1)/2R
where k 12 & whole number.
We now conzider the function F(x) defined by mesans

of a uniformly convergent series g - o9
Fix) = £(x) + (1/2)0(2%) + (L/8)P(kx) +seas = :EE 2 Pe(2n x)
@

It is easily seen that F(x) has a dizcontinuity
at every fraction of the interval for whieh the denominator
iz a power of 2 and the numerator an odd number. This is
the example we promised of a funetion whose graph samnot
be drawn with a peneil, though we can plot as many
individusl points on it a8 we may wish.

Now each term in the above sum csn be expanded as
a series of sines. It is suggested that F(x) itself
nay have such an expanaion. The argument is put somewhat
sonservetively, since adding an infinite number of
infinite series is a process in whieh paradoXes can
arise.

The standard procedure for finding the Fourier
gseries <€ b, 2in nx which corresponds to (and in
guitable comses eonverges to) & given function #(x)
is to usze the formula

4
nh, = #{x) sin nx dx
0

We are thus naturally ied %o ask whether this standard
procedure can be applied to F{x). The diseontinuities
of Fl{x) will cause discontinuities in the product F(x) sin nx
whiech appears aa the integrand in the above formula, when
F{x) is substituted for #{x) . This is the problem
Riemann attacked snd soived - to find a definition of
integral that remained valid for such = funetiongwith
disecntinuities everywhere dense, Riepann®s definition
in faet ecopes successfully with F{x) but not with every
diseontinuous funetion, aud not even with every function
that can arize in the study of Fourler series.

Alemenn®s paper thus had two effects. First, it
ealled sttention to the fazet that & harmless-locking serles
such 22 £ b, sin nx, which any physicist or engineer would
acaept ag & reasonable ezpression (not something
eooked up by 2 pure mathematician just to show how .
somplicated thingz could be ) - thet such a geries sould

beheve in a mich more irregular way thsn one would expect,
and that we should not restrist our investigatlone %o

smooth,continuous functions only. Secondly, sinee -

Bienann’s definitior eventually proved not even sufficient for
Fourier theory, 1% stimuleted s search for even
more-embraeing definitions of integral,
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In elesmentary cslcuiusz §i2 £{x) dx 1is thought of

a8 measuring the area under the gravh of f{x) between

=5 and x=h., The region under the graph may be regarded

as & set of points § a voint (x,y) belongs to this =zet

1f 1t satisfies the two conditiona &g ¥ £ b,

0L y<g f(x) » This set is called the %zg;gggg_ggg

of the funetion f{x) for the interval (a,b).

In veginning caleulus the upper boundary of this reglon

is usually a smooth curve, However the specification just
given in no way requires this to be so. Given any functlon,
we can construct the ordinate set by taking each polint
{(x,0) in turn and piscing on it an upright line of length
r{x). {Por the present, 1t will be sufficient to consider
funations that do not take negetive values.) For a very
disgcontinuous function, such as that having f(x) =1

for retional %, f{x)} = 0 for irrational x , we cannot draw
the ordinate aet but we can 8till imagine the construction
being earried out. We 3hsll be able to define the
integral of such a function if we oan find some why

to explain what we mean by the area of its ordinate =met,

The problem of measure is to find definitions of
volume,erea and length that still work for complicated and
irregular collections of peinta, As an integral corresponds
to @ partisular question sbout area, z0lving the genersl
preblen of measure automatlcally solves the problem of
defining integration.

Even in elementary school the problem of measure
arises, implicitiy if not ewxplicitly, when we talk about
the sres of & country, an osk leaf or & country. For area
is measured in aquare incheg,square centimetres or
square miles § Canada, & lesf and 2 circle are equally
unzuiteble shapes for disseation into square pleces, Of
courze there iz no difficulty in finding the area of a
region that can be byoken into a number of reetangleaa
Both in practice and in theory, the —
area of s region with curved boundariez
iz found by means of over~ and
under=getinates based on shapes
bulit from rectangles. In Figure 7,
the region bounded by heavy lines
gives us an over-estimate of the
area of a quarter cirecle, while the
ghaded region gives us an ‘
underestinate, We define ag the area Flgure 7 .
of the gquarter circle the common limit
to which the over~estimates and the under-eztimates tend
1t is the infimum of the over-esatimatez and the
gupremum of the under-~estimates, Figure 7, in essentials,
indicater the basic ides in Riemann®s definition of an
integrel. Riemann®s contribution lay in showing that this
aimple ides could cope with unexpectedly complicated
cames, such as that of P(x) discuzesed earlier.
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We ean give an example of a funstiom, for which the
Riemann theory of integration is inadequate,without
using sny advenced idea, Let B(x) = 1 when
x = (2k+1)/2P where R and n are whole numbers, 1
B(x} = 0 for all other x. We now try to define 5 B{x) dx.
To get ghg ordinate set we put 0
vertical lines of unit length )
for x = 1/2, 1/, /by coees ©,1) ()
Flgure 8 is meant to suggest the
result of doing this. To get an
over-estimate of the area of this
ordinate zet, we have to cover all
these lines with rectengles, It is falrly (0_,0) e (I_:o)
clear in doing this we are bound to cover Pigure 8.
the square with corners (0,0),{1,0),(C,1),
(1,1}. This square by itself,in fact,gives the most economical
over-sstimate, namely area 1, How are we to pget an
under-estimate ? In Figure 7, we got an under-estimate by
putting & number of rectangles inside the unit circle,
However we cannot put any rectangle at 2ll inslide the
ordinate set in Figure 8. A situation of this kind frequently
- ayises, and & device has beeh found to cope with this
diffieulty. We consider the points of the unit aquare
that do not belons to the ordinate set j by covering these
with rectangles we find an over-estimste for thelir area 3
we then subtract thie over-estimate from the area of the
unlt square. This gives us an under-estimate for the
area of the points that are in the ordinate set,

Now the points not in the ordinate set correspond to
thoze values of x which are either rational numbers with
denominators not powers of 2, or irrational. These points
also lie on vertical linesz which effectively give a shading
of the unit square. The lowest over-estimate we can find
for them is slsc 1, As 1-1=0, the best under-estimate
we oan make for the area of the ordinate set is 0.

Combining these resultas, all we can say about the
ordinate set is that itz area is not leas then 0 and not
more then 1, which i neither a surprising nor & helpful
eonclusion:{l We are unable to attach any particular

number to 0 B{x) dx by this procedure ; this integral 1is

in fact, as we promiszed earlier, &n example of an integral
for which Riemann's definition is inadequate. The definition
of integral however can be extended to make this intzgral
meaningful 3 this iz achieved by Lebesgue’s definition of
integration, published in the years 1901 and 1902, 3Some
fidesn of the difficulty of the problem may be gathered by
noting that nearly half a sentury separates the work of
Riemann from that of Lebesgue. In the intervening years
many good mathematicisns worked on the theory of
integraticn but failed to find the key that would unlock
the problem.
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The gontribution of Poyel.

The decisive new idea that this problem demanded
appeared for the first time in Borelt's book “Legons sur
1a Théorie des Fonetions®, published in 1898, The
Russian historisn, I.N. Pyezin, in hiz bock on the development
of the soncept of the integral, commentz on the almost
casual way Borel presented this new idem, Borel took only
3 pages to sketch hig theory of measure j the thoughts are
presented clearly but without detailed proofs, in section
3 of Chapter 3 of hils book,

Borel seems to have arrived at this new idea in the
course of attseking a problem that had nothing to do with
integration. An irrationel number can be approximated by
s rational number. Por instance Y, 2/3, 5/7. 12/17, 29/41
are increasingly good spproximationz to  1/a/2. Liouville
in 1844 investigsted how good asueh approximations were.

From hiz very general theory we select a very speclal
result, namely that 1/ Af2 differs from 2/3 by more than
(1/2)/3%, from 5/7 by more than (1/2)/7% , from 12/17? by
more than (1/2)7/17® and #0 on § in faect, any fraction p/q

) differs from 1/ AF2 by more than (1/2)/q*, which we
'may write more conveniently as 1/2q%.

Licuvilie's resulta were obtained by detalled considerations
of continued fractions, Borel found & simpler way of looking
at certain broad aspects of Liouvilie's work. The result
given in the previous paragravh could be formulated as
follows. Suppose we start with the interval [0,1], and
for each rationel number p/g we chop out all the numbers
that differ from p/q by 1/(2q%) or les=, Thus we would
remove the interval [ 7/16, 9/16] consiating of all the
points within 1/16 of 1/2. Similarly we would remove the
interval [17/54, 15/547 centred on 1/3, end so on., In
the process every rational number would be removed ,together
with an interval surrounding it. One might well guesz that
nothing would remain. However Liouville's theorems show
that 1/ AF2 = snd various other numbers would survive
this operation., Borel caloulated the total length of the
intervels removed, There are gq-~1 fractions with
denominator q, 8¢ we remove q<l1 intervals of length 1/q2 .

- : o Together these amount to less than 1/a%.
As g rune through the numbers 2,3,8ccce0 in tum, the
total length removed isg less than

1/2% 4+ 1/3% + 1/4% % aeevevcos

which iz known to be (n®/6) -1 or spproximately O.6H85,
As this number is less than 1, 1t would indeed be remarkable

1f nothing remained of the original interval, of length 1,
after removing the intervals. Borel thus found a simple
argument showing that results of the kind Liouville

cbtained ought to ba expeoted,



42

Mozoga

Borel went further. He showed that the set of points
remeining after the removsal of all the intervals was
actually uncountables The proof iz by reductio ad absurdum.
Suppose the opposite to be true, Then the set of peints i=
countable, and the points ean be arranged in & sequence
Ry § By o By o By 5 ceson Imagine these points marked
on & line,We take & ghort piece of thread, say of length 0.1l .
We out it in halves and glue one plece to the line so that
it sovers &, . The remaining piece we again bisect, and
use one of the halves to cover e, . We continue in this
way § at sach stage we use only half of the balance in
hand to cover the next point, Thus we never use up all
our threed at sny finite stage of the process. When the
procesgs 1s complete -~ if one can concede the completion of
an infinlte proeess - every point GR has beegn covered with
thresd. Thus all the points surviving the removal of the
intervals would have been csovered with & length of only Oo.l.
But the intervals removed had a total length of only 0.645.
Thus 4t would seem that the whole of the unit interval
oen be sovered with a length of only 0.745. One naturally
agsumes this to be impossidls, snd we have rsached the
required contradistion. Berel gave a proof that
the srgument used here wae in fact perfectly rigorous g
nis proof used The principle often known sz the Heine~Borel
Theorsm, '

Borel®s srgument above iz entirely based on the idea of
iength § it ie thus relevant to measure theory, The depariure
1t mekes Trom 21l previous work is that it envisages covering
a2 set with an_infinite number of plisces of material,
wheress earlier theories had allowed only =2 finite number
of pieces, - in the line, & finite number of interveals ;
for areaz, a finite number of rectangles, Borel saw that
fritful results came from arguments, such az that just
sketehed, in which soverings by an infinity of pieces
were sceepted, He snalyzed the properties of length that
he had 4implicitly assumed in such arpuments, snd devized
a definition of measure that would ensure the existence
of these vproperties. {(Jes footnote 1, page 48,0f the 1950
edition of Borel's book cited sbove.)

In the attitudes of mathemeticlsns ¥o infinity one can
dissern 8 swing of the pendulum. The ancient Greeks,logisally
eautioug,avoided itz use, The 17th end 18th century
mathenmatieians, in the excitement of developing the saleulus,
used infinity with reckless abandon. In remction against this,
19th century wmathematicians developed a horror of infinity,
and duilt snalysis on the dasis of statements about Tinite
numbersg. It was probably this dread of infinity that
inhiblited mathemsticians from anticipating Berel®s ideas.
Cantor's work, bitterly opposed, represented the beginning
of the swing towards = - more nalve and trusting use of
infinity 3 in the main we are still under the Influence of
Cantora Future generationsz may well see further oscillations
of this pendulum. However that may be, it is clear that
the procedure of Borel, developed and worked out in detall
by lLebesgue, gave mathematicians new methods that were
both powerful and extremely sonvenient.



