‘u;&- 'er///j, M/"Z' /&f
7&_2é;;;f€r’~—¢uhgf§ [ St wrrk soas Aaser

EGA@ -%ﬂ\ih\f Mot 6 AuTe T

i/3

GLIMPSES OF TWENTIETH CENTURY MATHEMATICS.

At the time when "modern mathematics" was a frequently
heard phrase, there were two common misconceptions as to
what it meant. Just as the motor-car was quite different
from the horse and: cart, and had made the older form of
transport practically obsolete, it .was thoughtjthat”modern

“mathematics had no connection, with traditional mathematics,

which' indeed it replaced and made.unnegessary. . .

. Both ‘these ideas are completely incorrect. Modern
mathematics grew out of the older variety, and one of its
most valuable uses is to throw light on. some problem
that“can"only'be‘expressedain.the.symboligm,oflthe older
subjects. R S IR

VECTORS. '

. ‘Modern mathematics is .described. as general and abstract.
It is abstract; it does not .deal with the whole of any
situation, but only with some aspect of it. It is gereral;
the "aspect in guestion may- be seen in many essentially
different situations.. - : .. VU

‘We can-illustrate this by considering the modern
use of the word "vector". . Originally, "yéctor" had a very
definite meaning. A-vector could._be represented by a '
line segment, AB, in:2 or 3 dimensions, with an arrow to
indicate the direction from A to B. It had applications to
displacements;-velocities,-accelerationS'and_forces.
Vectors had ‘certain properties that made them. -
interesting to study. In modern usage, the.word- "vector” is
applied to anything that has these properties.” Thus it does
not indicate any particular type- of object; it refers to a

certain aspect:of many situations.. .

The  properties we require are very. few. ~A vector can be
multiplied‘bywa‘number;utwo'yectorskpéﬁ'pe added. Any -
collection of mathematical objects in which these two
operations can be defined is called "a vector space'. Of

" ‘sourse  the definitions. -of addition.and multiplication cannot
<.be“completely-random.;.TheywmustJbe such that, when working

with them, we can forget that they are not our usual' -
addition and multiplication,.and even so, we shall not
be led to incorrect results. In a formal treatise this

requirement would be spelt out in.a number of axioms.

OPTIONAL PROPERTIES. o S
. In:the-original -usage of vectors, lengths and angles

.played-a part.;It would be possiblé include in our -
description-of what we meant by."vector space" "~

the requirement that length.and.angle should be .
defined.  Indeed we shall sgonbbriﬂg,iﬁ‘sugh,’:,ffﬁ
requirements, but these will, then_.be regarded as singling
out-a special (though admittedly impq;tant)‘typé}of vector
space.'For;thenpresent;.however,we;are not doing -
this. We are.agreeing to:.accept. a. situation:in
which these concepts are lacking as a vector’ space.

~An: extreme example would. be if we_supposed that marking
the point.{x;y) on.graph paper. indicated that we were:
thinking of x-cats. and y- dogs.: It would not matter"if the
graph paper was marked out in squares or in T
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parallelograms. There is no reason for saying that a cat
.must be perpendicular to-a dog. There might be some
objection :to.calling . this example a vector space, _

since ‘the numbers multiplying vectors are supposed to
include fractions and negative numbers, whlch are not-

_ appropriate when applied to animals. However perhaps this
‘rather crude illustration will serve to emphasise that the
basic concept of. vector space includes systems with no
resemblance at.all to anything_ in Euclidean geometry.

THEOREMS ON VECTOR SPACES .

_ ‘It might seem. that ‘there is so llttle ‘information in the
definition that there will be nothing at

all to say about the most general vector space, but this is
not so. We can, for instance, prove that in such a space
the diagonals of a parallelogram bisect each other.

To begin with, we can attach a meaning to two vectors
having the same direction. We say that ku has the same
direction as u, and. that-the line’ 301n1ng the origin to u "
consists of all the "vectors ku. The line through v
parallel to the line just mentioned consists of all the
vectors wv+ku. The points v, v+u, v+2u, v+3u, and so on,
~are evenly spaced along this line.

In particular, if w=v+2u, then v+u is the mld-p01nt
between u and: w,‘and is given by (1/2)(v+w)

The points 0, a, b, and a+b are corners of a
parallelogram The mid-point of 0 and a+b is (1/2)(a+b),
and this is also the. .mid-point of a and b, Whlch proves the
theorem mentloned above.

EXAMPLES OF VECTOR SPACES.‘ ’

We now look at some examples of vector spaces. We begin
with two very familiar examples, then we have a less
familiar example, and after that something totally
unexpected ‘ ;

(i). Space of 2 dimensions. Aivector is specified by two
. numbers. If u = (u1,.u2) and v = (v1, v2),Athen we define ku )

as.(ku1,_ku2) apd u+v as (u1+v1,_u2+v2)jj

(ii). Space of 3 dimensions. Inlthe-same‘way we define ku
as (ku1, ku2, ku3) and u+v as (u1+v1, Uy +Vy u3+v3).

(iii). Space of n dimensions. For the physical space in
which we live and‘move,'the numbers 2 and, 3-have special
significance. However, in ‘the mathematical patterns used
in (i) and (ii), nothing is done that depends on the -
particular numbers 2 and 3. We can define a vector in space
~of n dimensionsg, specified by n numbers. To multiply such a
vector by k, we multiply each of the numbers specifying it
by k. To get the sum of two such vectors, we add the
correspondlng numbers in the two brackets.

,_(1V)L_Funct10n space. ,There are 51mple procedures for
multiplying a function by a number and for adding two :

. functions. 'These have the pattern we require in a vector
space. '
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For example, if s stands for the function s(x)= sin x,
then it is natural to interpret t=3s as meaning that
t(x) = 3 sin x. If ¢ stands for the cube function, with

c{x) = x3, then we interpret f=s+c as meaning

£(x)=sin(x)+x>.

Thus the procedures we use, almost unconsciously, when
making calculations with functions are of the type
apfpropriate to work with vectors. We may speak of
functions as vectors, and all the functions defined on a
given interval as forming a vector space.

Functions that can be expanded in a power series are
known as analytic. For such functions there is a very close
analogy with the n-dimensional vectors considered in (iii).

For example

(1—:-{)_1 = 1T + % + 2+ 22+ x4 X+ ...
(’l-—x)—2 = 1 + 2x + 3x2 + ax> + 5x? 4 6%° + .ee
(‘]-x)_1 + (1—x)"2 = 2 4 3x + 4x% + 5%° 4 6x? + 7x°

In the top row we see the ccefficients
(1, 1, 1,1, 1,1, «...). In the second row we see
(1, 2, 3, 4, 5, 6, ....). If we add these by the usual

vector rule we get (2, 3, 4, 5, 6, 7, ...} as seen in the
bottom row. Thus we may think of these series as specifying
vectors in space of infinite dimensions, and as being added
in the way usual for vectors.
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